

Power Assembler

COPYRIGHT NOTICE

Copyright Notice

Copyright 1986 by Spinnaker Software Corporation. All rights reserved. The
distribution and sale of this product are intended for the use of the original
purchaser only and for use only on the computer system specified. Lawful users
of thls program are hereby licensed only to read the program from its medium
into memory of a computer for the purpose of executing this program. Copying,
duplicating, selling or otherwise distributing thls product is hereby expressly
forbidden.

Commodore 64 and Commodore 128 are trademarks of Commodore Business
Machines, Inc.

Page 1

TABLE OF CONTENTS

SPECIFICATIONS 3

LANGUAGE FEATURES 6

GETTING STARTED 7

EXPRESSIONS 11

ERROR MESSAGES 13

PSEUDO OPS 16

PSEUDO OPS DEFINITIONS 18

MACRO OPS 33

TEMPORARY SYMBOLS 36

LABELGUN (C-128 Only) 38

TWO ENVIRONMENT EDITOR 39

2/80 ASSEMBLER (C-128 only) 43

PROGRAMMING THE 2/80 (C-128 only) 46

POWER UNASSEMBLER 48

STANDARD INSTRUCTION SET 51

NON-STANDARD INSTRUCTION SET 54

CORPORATE POLICY 56

RECOMMENDED READING LIST 57

INDEX 58

Page 2

SPECIFICATIONS

Your POWER ASSEMBLER actually encompasses two stand-alone machine language
development systems for the Commodore 64 and three for the Commodore 128.
One uses the Basic editor (enhanced by string SEARCH & REPLACE commands)
for writing its memory based source and the other its own powerful ASCII
editor. For the Commodore 128, there is also a complete Z/80 (C/PM's micro
processor) cross assembler which has all the powerful commands and features of
the other two programs.

Here is a brief rundown of the programs you will find on your system disk.

BUD is the boot for the Basic source compatible version of the assembler.

EBUD is the boot for the ASCII editor and its version of the assembler.

ZBUD (C-128 only) is the boot for the Z/80 cross assembler.

BUDDY.64 is the body of the Basic source compatible version of the
assembler which is loaded into memory when "BUD" is run.

BUDDY.ML (C-128 only) is the body of the Basic source compatible version
of the assembler which is loaded into memory when "BUD" is run.

BUDDYSYMS is the symbol table for "BUDDY.64" or "BUDDY.ML" as
generated by its assembly. You can use it to explore the code and to
create your own commands.

CREATE-BOOT (C-128 only) can be used to generate an autoboot for
"BUDDY.ML" that will not disturb source already in memory.

ED-BUDDY.64 or ED-BUDDY.ML is the body of the ASCII editor
compatible version of the assembler. It is loaded into memory along with
"EDITOR.64" or "EDITOR.128" when "EBUD" is run.

ED-BUDDYSYMS is the symbol table for "ED-BUDDY.64" or "EBUDDY.ML"
as generated by its assembly. You can use it to explore the code and to
create your own commands.

EDITOR.64 or EDITOR.128 is a multi-featured ASCII text editor, one that
does not clash with the Basic operating system.

MAKE-ASCII can be used to convert Basic style source to EDITOR.64 or
EDITOR.128 compatible ASCII source.

TEST .MNE is a complete source listing of all standard and non-standard
8500 mnemonics. Use these to familiarize yourself with 8500 command
syntax and to test the assembler.

TEST.ZMNE (C-128 only) is a complete source listing of Z/80
instructions. Use it to test ZBUD as well as to examine Z/80 assembly
language syntax.

INVOKE-Z80.BAS (C-128 only) is a short example of a Basic program
calling Z/80 routines.

Page 3

SWITCHER-SOURCE (C-128 only) is a POWER ASSEMBLER source program
to generate the 8500 "pivot" code used by the above. These demonstrate
dual processing technique in the C-128 and will help you to make full use
of the ZBUD Z/80 cross assembler.

UNASM-SOURCE is the complete, documented source program for our
powerful unassembler that will convert raw code to source that you can
LIST, SAVE, LOAD and, best of all, re-assemble using BUD.

ZBUDDY.ML (C-128 only) is the body of the Z/80 cross assembler which is
installed when "ZBUD" is run.

ASM.SH (C-128 only) is the version of POWER ASSEMBLER that was
designed to run under the SHELL program from POWER C 128 for
C language programmers. It is fully compatible with the Shell, Editor,
Ramdisk and Linker, and can be used both as a stand-alone assembler in
this environment or to write custom C language functions.

COMPATIBILITY

Your POWER ASSEMBLER is completely compatible with the Basic 2.0 source
format used in the Commodore 64 and with the Basic 7.0 source format used in
the Commodore 128, and with the Commodore disk operating system used in
both.
Assembly language programs can be written on the much enhanced C-128
editor. In addition to using this new editor's ability to renumber and
auto-number lines, delete line ranges, pause scroll and much more, with Bud in
memory users will be able to execute powerful string (label) search and replace
commands.

Pure ASCII SEQ or PRG files can also be assembled from disk or memory,
allowing source to be written on virtually any text editor or word processor.
POWER ASSEMBLER's own EDITOR.64 and EDITOR.128 provided supports 4-WAY,
bidirectional scrolling and paging as well as CUT & PASTE,
SEARCH & REPLACE and much more.

POWER ASSEMBLER for the Commodore 64 is fully compatible with
FASTLOAD/SAVE disk utilities such as BETTER WORKING's TURBO LOAD AND
SAVE.

SPEED

On the Commodore 64, symbols are organized as a binary tree for very fast
access of even gigantic tables. 6510 Mnemomics are divided into numerous
short lists which are selected via a quickly generated hash value for virtually
instantaneous command lookups. BUD LINK assembles its own ten source files
creating two ML programs containing over 8K of code in about two minutes
with Turbo Load and Save installed.

On the Commodore 128, source files can be linked or disk assembled using 1571
burst mode access through a qt:qsi RAM DISK maintained by the assembler for
very fast chaining. A binary structured symbol table and hash code access to
multiple, very short mnemonic lists insure near instantaneous memory based
operations.

Page 4

INPUT

Single, large source programs can be assembled directly from memory, or many
source files can be assembled as one, either by load linking or direct disk
based assembly. Many combinations of memory and disk based assembly are also
possible.

Multiple device handling, allows for the application of any number of disk
drives.

OUTPUT

Code can be sent directly to memory allowing for fast, diskless testing of fairly
large programs.

Any number of LOADable, machine language programs, all sharing a common
symbol table, can be created in a single operation.

Symbol tables can be automatically saved in part or in full and used by other
source programs. New modules for very large ML projects can be designed,
tested and retested in memory without having to re-assemble the whole system
each time.

POWER ASSEMBLER can be instructed to direct all output through custom user
routines for special handling.

DISPLAY

Show full assembly process including source lines, object code and symbol table
listings for all or any portion of an assembly.

Paginated output may also be directed to a printer.

Error checking is complete and error messages are full and descriptive. Where
many errors are anticipated a Display-Errors-Only-To-Printer mode is supported.

Page 5

LANGUAGE FEATURES

If/else conditional assembly is supported

Temporarily offset program counter assembling generates patches of code that
will be relocated before execution.

Setup internal buffers as well as passive external variable tables effortlessly.

Automatically merge Basic and assembler source programs. BUD allows Basic to
SYS, POKE, and PEEK assembled symbol table values by name.

Work with non-standard opcode using all of their unofficially yet generally
agreed on mnemonic forms.

Macro-ops to move memory (up or down any distance), fill memory and test
pointers make short work of these common and often tedious procedures.

Data can be in the form of word tables, byte tables, ASCII text, even
screen-code text.

Multiplication, division, addition and subtraction of any combination of hex,
binary, decimal, ASCII, screen code or symbolic values is supported.

Symbols may be of any length and remain unique.

Temporary (reusable), character (/) symbols allow for easier coding of
routine short branches and result in smaller symbol tables and even faster
assemblies.

Page 6

GETTING STARTED

If you are like most people you will want to try something right away just to
feel the program out and get on the right track. Type in the following:

For Commodore 64 - -

LOAD"BUD" ,8 (RETURN)
RUN (RETURN)

For Commodore 128 - -

DLOAD"BUD (RETURN)
RUN (RETURN)

This will cause the body of the program to be loaded into memory and
executed. Upon completion you should see a line of copyright information along
with a pair of meaningless (at this time), hex range numbers.

MEMORY USAGE

POWER ASSEMBLER resides completely in the "hidden" RAM beneath Basic and
the Kernal ROM. This maximizes the amount of memory free for source,
symboltable and utilities such as SUPERMON and POWER which lower the top
of Basic.

For the Commodore 64, a few bytes of memory starting at 999 are reserved for
POWER ASSEMBLER's entry code.

A SYS 999 will probably, though not necessarily, be the only Basic statement
executed before POWER ASSEMBLER takes over. In other words, a SYS 999
invokes the assembler. POWER ASSEMBLER will act on all source following.
Basic will interpret and try to execute everything up to and including the
SYS 999 line.

For the Commodore 128, the page of memory between $fOO and $1000 in BANK 15 is reserved
for POWER ASSEMBLER activities. If you interfere in this area you may have to re-boot the
program. If you need to press the reset button for other reasons, POWER ASSEMBLER should
not be affected. The entry routine sits at 4000. A SYS 4000 will probably, though not
necessarily, be the only Basic statement executed before POWER ASSEMBLER takes over. In
other words, a SYS 4000 invokes the assembler. POWER ASSEMBLER will act on all source
following. Basic will interpret and try to execute everything up to and including the SYS 4000
line.

WARM-UP EXERCISE

Enter the following short program just as if you were writing In Basic. The
sequence of the line numbers Is Important but the actual line numbers
themselves are not. You don't have to bother typing the comments. The
colons are used to introduce white space to the source in order to make it
more readable. They could be replaced with UP ARROWs or left out
altogether.

1 SYS 999
2 .ORG 10000
3.MEM
10 PRINT =$FFD2
20 LDX #0

;calls POWER ASSEMBLER
;put code at 10000
;output to memory
;kernal routine
;initialize X

Page 7

30 - LDA MESSAGE,X
40: JSR PRINT
50: INX
60: CPX HMESSAGELEN
70: BNE-
90 RTS
100:
110 MESSAGE =*
120 .ASC "HELLO WORLD"
130 MESSAGE LEN =*-MESSAGE

;get next character
;print it
;increment x
;see if done
;if not loop back
;else return

Look it over to see if you got it right, then RUN it. If this was your first
ever coding in assembler you undoubtedly are facing a number of error
messages. Examine lines with errors closely to see how they differ from the
above source. When you can assemble with no error messages try executing the
code with a SYS 10000.

If all went well the words HELLO WORLD will be printed on screen. If not,
you should know that you are the first person ever whose assembly language
program failed to work perfectly the first time (ha ha, only kidding). Try
again.

Notice the .ASC command. Commands with periods in front of them are called
pseudo-ops. They do not represent any particular ML opcode. They are
instructions to POWER ASSEMBLER. Familiarity with them will allow you to
take full advantage of POWER ASSEMBLER's many abilities.

Notice the use of "-" as a label. This is an example of the use of a
POWER ASSEMBLER temporary label. Some name like LOOP or BACK or
HOWDY could have been used place of the "-" characters; but why bother?
The BNE - codes a conditional branch back to the line last labeled with a "-"
character. The "+" is used as a forward referencing temporary symbol. These
can be used again and again.

Notice also how the statements are laid out. Each statement consists of up to
four distinct parts:

A FLAG or LABEL when used will come first. POWER ASSEMBLER will place
it in the symbol table (unless temporary) along with the address of the program
counter at the beginning of its line. Throughout your source you may refer to
that particular line (ie. address) using the symbol name.

Next comes the OPERATOR which is the instruction portion. It will be a
PSEUDO-OP or MACRO command to POWER ASSEMBLER or a mnemonic
representing a specific opcode.

Many operators will require an OPERAND address or value to complete their
instruction. The OPERAND portion of the assembly language statement follows
the operator.

Page 8

Last will be your comment. A semi-colon must precede it. These are of no use
to POWER ASSEMBLER who knows exactly what is going on all the time, but
can be of tremendous benefit to you who may someday forget.

SYMBOL OPERATOR OPERAND COMMENT

10 MEANINGFUL LDA uo ;EXPLAIN

There must be at least one space separating each of the first three parts.
Extra spaces will always be ignored.

SYMBOLS

Symbols may be of any length so you can and should use very meaningful
names.
The apostrophe has no special meaning to POWER ASSEMBLER; multi word
symbols should probably be broken up with these for clarity. Notice how much
more readable WRITE'TO'TAPE is than WRITETOTAPE, or COLOUR'MEMORY is
than COLOURMEMORY.

Permanent symbol names may not begin with any of the following characters:

OI23456789!U<>"@$%() ,./*+-=

or contain any the following arithmetic operators.

/ *
These would cause POWER ASSEMBLER to mistakenly assume that the symbol
was a numeric or character value, or an expression, probably resulting in a
delightful and poignant error message.

Symbols may not contain blanks. Again, use the apostrophe to break them up.

Also, a symbol may not be the same as one of the standard mnemonics like
LDA or DEX or BNE. POWER ASSEMBLER is great but it can't read your
mind.

EQUAL ASSIGNMENTS

In addition to flagging, symbols may be given values using an assignment
statement. The equal sign is used just as in Basic assignments. One space
must follow the symbol name. Extra spaces are optional. Here are some
examples:

1 SCREEN' START
2 SCREEN'END
3 CHROUT
4 PROGRAM'COUNTER

$400
SCREEN'MEMORY.999
$FFD2

Page 9

SET ASSIGNMENTS

You cannot use the equal sign or flagging to reassign a new value to an
existing symbol. To change a symbol value you should use the LEFT ARROW in
place of an equal sign. Symbols to be reassigned should be assigned values
exclusively with the LEFT ARROW assignment operator so that they maintain
parallel values on both passes of the assembly.

LEFT-ARROW, set re-assignments can lead to confusing programs and hard-to
diagnose errors. POWER ASSEMBLER's support of temporary symbols, large
symbol names and numerous program counter control pseudo-ops reduce the
possibility that symbol value re-assignments will be necessary.

ASSIGNMENTS TO PROGRAM COUNTER

Symbols may be set to the value of the program counter in two ways: (1) by
assignment to the program counter "*,, variable (see line 4 above) and (2) by
flagging. Flagging involves simply putting the name first on any line:

10 ANYNAME DEX
20 BNE ANYNAME

;decrement x register
;loops until x ; 0

The same program counter value can be assigned to a number of symbols via
the "*,, assignment. Only one flag may be used per line. Tabled flag values
are compared with the program counter on pass two of the assembly in
checking for a deadly out-of-phase condition.

OPERATORS

The operator is also referred to as the instruction. In its English or source
form it is called a mnemonic. Once converted into a machine language byte it
is known as an opcode.

The operator is the command portion of the assembly language statement. The
commands which begin with a period are called pseudo-ops. These are not
converted into any specific opcodes but tell POWER ASSEMBLER to do
something special.

Many, though not all operators, will require that some information follow. This
may be an address or numeric value or a string of comma delimited values or
even quoted text as in a filename or .ASC string. Absence of this information
will lead to an OPERAND EXPECTED error message.

POWER ASSEMBLER of course recognizes all of the standard mnemonics used to
represent machine language opcodes. These three letter terms are converted by
the assembler directly into the appropriate one byte opcodes. You will be
informed if a value was expected but didn't follOW an instruction, or if an
unexpected value or illegal value followed.

OPERANDS

These are the values which are required by many operators to complete their
instruction. If you start a line with an STX instruction it is assumed that you
wish to STore the information in the X register somewhere. Therefore,

Page 10

following this must be an OPERAND value relating to where in memory this
value is to be put.

An operand may be any elsewhere defined symbol; a hexadecimal, binary or
decimal value; or a screen code or ASCII character. Any combination of these
may be used in an expression to produce an operand value. Binary numbers
must begin with a percent sign (%11110000). Hexadecimal numbers must begin
with a dollar sign ($fO). Decimal numbers are otherwise assumed (240).

Values greater than $ffff (65536 decimal) or values less than 0 will lead to an
error message.

10 LDX /tEND-START ;length of whatever
20 STA 12*4096 ;store at $cOOO
30 LDA POINTER+l ;high byte of pointer
40 LDA /t$100-15 ;is 241 (negative 15)
50 LDA /tn&n+128 ;ascii for reversed &

Here is how an RTS jump might be coded using expressions as operands:

10 LDA)PICTURESHOW-l:PHA
20 LDA (PICTURESHOW-l:PHA
30 RTS ;is the same as jmp pictureshow

Notice that two or more statements can be put on one source line if they are
separated by a colon. The colon always signals a new line with two
exceptions: (1) when the colon occurs between quotes as in a filename,
(2) when the colon occurs in a comment •.. that is after a semi-colon. A
command cannot follow a comment on the same line.

The n(n and n)n (low byte - high byte) operators
entire expression following has been evaluated.
value represents a numeric constant and not an
immediate value.

EXPRESSIONS

are always applied after the
They also indicate that the
address; in other words, an

Multiplication, division, addition and subtraction are supported in expressions.
Fractions are truncated in division. The expression 8/3 would equal 2.

Expressions are evaluated strictly from left to right. Any combination of
hexadecimal, decimal, binary, ASCII, screen code, or symbolic integer values may
be involved. Nowhere in the course of evaluating an expression will a negative
value be tolerated. Neither will a value greater than $FFFF be acceptable.

Expressions which generate negative values are often accidental. Calculating
the length of a table by subtracting the address of its end from the address of
its beginning (instead of the other way around) could result in a frustrating and
hard-to-diagnose mis-performance of the code.

Page 11

If one must work with negatives they can be easily, just not accidentally,
expressed.

100 .BYTE $1OO-VAL ;: -val
200 .WORD $FFFF-VAL+l ;: -two byte val

Parenthesis are not supported in POWER ASSEMBLER expressions. These signal
indirect addressing mode only. If ordering cannot be properly established in
simple left to right layout then an expression should be divided into two or
more parts.

When the "*,, is used as a variable in an expression it always holds the value
of the program counter. This is the address at which the code for the
"*,, line will originate In memory.

Here "*,, is used to point to the address operand portion of a self modifying
JSR instruction.

10 LDA (DESTINATION
20 STA TARGET
30 LDA >DESTINATION
40 STA TARGET+l
50 JSR $0000: TARGET :*-2

When the "(" character precedes an expression it acts on the entire value. That
is, the expression is completely evaluated first, and then the low byte only of
this value is returned.

The ">" returns only the high byte.

10 LDA ($ABCD
10 LDA >$ABCD
10 LDA ($1100-1
10 LDA >$1100-1

;same as Ida U$cd
;same as Ida U$ab
;same as Ida U$ff
;same as Ida U$10

Notice again how the ">" and "(" always force immediate mode. In other
assemblers only the "u" can do this. Indeed you could use LDA U(OPERAND
with POWER ASSEMBLER, but the "u" would be superfluous.

The same is true when using screen code and ASCII values:

10 LDX "A"
20 LDY @"A"

;same as Idx U"A" or Idx U65
;screen code ie. Idy U 1

The immediate mode Is automatic when using ASCII codes, screen codes, and
low or high address bytes. A situation where you would wish it otherwise is
inconceivable. Using immediate mode where its intention is obvious should help
you avoid often puzzling "u" omission errors where zero page addresses are
accessed instead of one byte immediate values.

ADDRESSING MODES

Syntax for describing addressing modes is
POWER ASSEMBLER adheres strongly to this standard.
the following to represent anyone byte operand.

Page 12

highly standardized.
The value 0 Is used in

The value 1000 is used

where any two byte operand would do.

1 LDA #0 :immediate value
2 LDA 0 ;zero page address
3 STX O,y :zero page y indexed
4 LDA O,x :zero page x indexed
5 LDA 1000 ;absolute address
6 LDA 1000,x :absolute x indexed
7 LDA 1000,y ;absolute y indexed
8 LDA (O,x) ;pre-indexed indirect x
9 LDA (O),y ;indirect post-indexed y
10 BNE 1000 ;relative branching
11 JMP (1000) ;indirect jump
12 LSR ;accumulator implied
13 INX ;implied

Some assemblers allow or require that the accumulator mode be expressed
LSR A, ASL A, ROR A or ROL A. POWER ASSEMBLER, however, would try to
look the "A" up in the symbol table. So leave it off.

POWER ASSEMBLER will use zero page addressing whenever possible. You may
force absolute addressing with the "I" character.

1 LDA $FF,X
2 LDA !$FF,X

ERROR MESSAGES

;codes b5 ff
;codes bd ff 00

Most of us never make mistakes and have no use for error messages.
there are always a few to go and spoil it for everyone else. So for
few people we have included comprehensive error handling and checking.
rest of us perfect programmers can just skip over this section.

Still,
these

The

Seriously however, I use 'em myself •.. a lot. Unless an error is fatal,
POWER ASSEMBLER will place NOPs into your code where it is encountered.
The number of bytes which would ordinarily have been generated by the
instruction determines the number of NOPs output. If you were to include the
line 1000 YIPPIE DIPPIE in a program you would get an error message but no
bytes would be output. Your code would not be affected.

If you had written 1000 BNE *+500 you would get a BRANCH OUT OF RANGE
error and two NOPs would be output. You might be able to do a certain
amount of testing in spite of it.

Other errors, known affectionately as fatal errors, will terminate the assembly
after closing all files.

This is the case with phase errors, II 0 errors or
press the RUN STOP key assembly is stopped.
If you are .FAST assembling with a blank screen
instantly.

symbol table overflow, I f you
Open files are always closed.
an error will turn it back on

The messages are fairly self-explanatory and, in most situations, should make it
easy to diagnose the problem. Error messages are always listed above the
offending source line which is displayed following a »>.

Page 13

Here is a rundown and brief description of each of POWER ASSEMBLER's error
messages:

QUOTE EXPECTED following .ASC or.SCR or there is more than one
character between quotes where only one is permitted.

UNKNOWN PSEUDO-OP means you've used the "" as the first character of
a symbol or mis-spelled a pseudo-op (.BITE).

TOO MANY STRINGS if more than three space separated "words" appear in
one statement outside quotes.

COMMAND EXPECTED means a mnemonic or pseudo-op was expected.

OPERAND EXPECTED means a value or parameter is needed to complete
some instruction.

INVALID MODE OF OPERATION if you try to code some addressing mode
not allowed with the command.

RE-DEFINITION OF A SYMBOL if you used the same flag twice or otherwise
tried to reassign a value to a symbol with "=".

ONE BYTE VALUE EXPECTED if you try to use a two byte operand where
unacceptable.

IMMEDIATE VALUE INDEXING is a special case of the invalid mode in
which one tries to index a number instead of an address ie. Ida #IOO,x

KEYBOARD ERROR probably indicates a typo or perhaps some illegal
character making its way into a symbol.

VALUE TOO HIGH OR NEGATIVE when a negative value or a value higher
than $ffff is arrived at during an expression evaluation.

NON-NUMERIC CHARACTER a symbol begins with a number 0-9, or a
non-digit has made its way into a number.

UNDEFINED SYMBOL means the symbol was not found (on pass two only) in
the symbol table; perhaps it's mis-spelled or a "$" has been left off a hex
value.

BRANCH OUT OF RANGE if you attempt to relative branch too far ie. more
than +127 or -128 from *+2.

UNEXPECTED OPERAND if some inherent command is followed by a value.

SYMBOL TABLE OVERFLOW there is no longer room in memory for your
source and the generated symbol table. You'll have to .FILE assemble it
from disk or split it into two or more pieces and .LINK them.

FILE NAME EXPECTED a special case of operand expected; a file name is
needed to complete one of the file handling pseudo-ops.

Page 14

PHASE ERROR For some reason the symbol table as created on pass one is
out of sync with the code on pass two; this could be caused by a late zero
page symbol assignment or leaving characters outside quotes in a .SCR or
.ASC text string. POWER ASSEMBLER checks for phase errors by looking up
all labels on pass two to see if their value in the symbol table matches the
program counter. If not something has gone very wrong. You don't want to
continue in this condition.

BUS CRASH!!! there's a problem on the IEEE bus; the disk command channel
is read for your enlightenment.

If you are assembling a very large, perhaps newly converted, program for the
first time and anticipate more errors than will fit on the screen then you might
want to direct errors-only to your printer via the .DIS E command

COMMENTS ON STYLE

POWER ASSEMBLER allows you to use colons to link source statements just as
in Basic. Never abuse this! Your source may become unreadable.

WHITE SPACE

Use a few blank lines to separate the various modules and ideas of your
program. Indent everything but your symbols a few spaces to the right so they
stand out.

There are two ways to do these things: Obviously you can't just enter a blank
line; Basic editor would ignore or erase it. Put a colon, or better yet, an
UP ARROW by itself on the line. The UP ARROW is ignored by
POWER ASSEMBLER as the first line character. Use it to keep the BASIC
editor from removing leading spaces.

COMMENTS AND MEANINGFUL SYMBOLS

Use meaningful symbol names and comment liberally.
impressed by this in the source programs of experts.

have always been

Use the temporary symbols "-", "+", and "/" to code short branches and avoid
having to generate meaningless symbol names for them. This should free up
your imagination for those names that do matter. It will also allow crucial,
thoughtful labels to better stand out.

Use POWER ASSEMBLER's built in string handling editor, Labelgun, to keep
your symbols meaningful and up-to-date without extra typing or hunting around.

Page 15

MAKE THE ASSEMBLER DO IT

A common mistake of beginners is to calculate by hand the lengths of strings
and tables in their programs. Use symbols and expressions to do this; then,
when you change the length, you wont have to recalculate.

10 TABLEBEGIN =*
20 .ASC "******PRINT MESSAGES"******"
30 .SCR "/ / / / /SCREENCODE VALUES/ / / / I"
40 .WOR 1000,2000,ADDRESS,256*12
50 .BYT 0,1,2,4,8,16,32,64,128
60 ;or whatever else goes in tables
70 TABLEEND =*
80 TABLELENGTH TABLEEND-TABLEBEGIN

In short, make the assembler do the work. Assembly language, in addition to
producing very fast and compact code can be flexible, versatile and easy to
modify and understand.

PSEUDO OPS

Here are the pseudo-ops which POWER ASSEMBLER recognizes. Where a
[word] operand is required any valid POWER ASSEMBLER expression involving
any combination of $Hex, Decimal, %Binary, "ASCII", @"SCREENCODE" or
symbolic values can be used. If a [byte] is expected the expression value
cannot exceed 255.

Where quote enclosed names or text strings are expected those provided are
only examples. Make up your own, okay.

Where the operand is a pointer [••• PTR] a one byte value is needed. It will
represent a zero page address. The square brackets are not a part of the
command syntax. They do not go in your source.

PSEUDO-OPS **quick reference table**

*= [word]

.ORG [word]

.BUF [word]

.OFF [word]

.OFE

.MEM

.DIS

.DIS P

.DIS E

;set program counter

;set program counter

;create internal buffer

;offset code destination

;end of offset coding

;output to memory

;display assembly (on/off)

;display assembly to printer

;display only errors to printer

Page 16

.OUT [word] ;output through user routine

.DVI [II] ;define input device (default 8)

.DVO [II] ;deflne output device (default 8)

.OBJ "MY-PROGRAM" ;create object file

.BAS "COMBO-PRG" ;merge basic with ML

.LINK "NEXT-SRC" ;chain next source file

.LOOP "BACK-FIRST" ;end of chain

.FILE "ANY-SOURCE" ;assemble from disk

.SEQ "ASCII - FILE" ;assembles ascii format source file

.LST "SYMS-TO-USE" ;load symbol table

.TOP ;top of .SST when not all symbols

.SST "SYMBOL-TAB" ;save symbol table

.BYTE [byte •.••] ;table one byte value(s)

.WORD [word •...] ;table two byte value(s)

.ASC "characters ••• " ;table ascii value(s)

.SCR "characters ••• " ;table screen code value(s)

.PSU ;for non-standard opcode mnemonics

.FAS ;turns screen off during assembly

.END ;force end of source

.IF [word] ;if word <> 0 then continue

.ELSE ;otherwlse skip to here then begin

.IFE ;conditional assembly ends

.TEST [THISPTR.THATPTR] ;compare indirect addresses •

• DUMP [BEGINPTR ENDPTR] ;dump acc. to range of memory .

• MOVE;[BEGINPTR.ENDPTR.DESTPTR];move memory

Any pseudo-op mnemonic can be extended or truncated. If you would rather
use .WOR or .WO or even .W instead of .WORD. POWER ASSEMBLER will still
accept it. Conversely •• BUFFER .DISPLAY or .MEMORY would work the same as
BUF •. DIS or .MEM.

Page 17

Programmers, being the lazy lot that we are, are more apt to truncate than
extend POWER ASSEMBLER's pseudo-ops. Don't get too carried away with
this. The command .0 $COOO might ORiGinate program counter to $COOO; it
also might cause POWER ASSEMBLER to jsr OUT through a user routine or do
some OFFset coding, or even try to open up an OBject file.

PSEUDO OPS, DEFINITIONS

.ORC [address]

The .ORG pseudo-op must be followed by an address value. This tells tells
POWER ASSEMBLER where the machine language output will reside in memory.
If it is not used output will ORiGinate at $COOO hex.

10 .ORG $2000
10 .ORG 50000
10 .ORG *+2

;code at $2000 hex
;code at 50000 decimal
;bump program counter by 2

.ORG *+2 above will not result in actual output. If you had begun sending
bytes to disk such a statement would lead to trouble. When loaded into
memory the code would be out of sync with the symbol table used to create it.

Instead, use .ORC to set up flexible variable tables before output has begun
and especially after output has ended.

10 .ORG $200
20 FLAGI .ORG *+1
30 FLAG2 .ORG *+1
40 VECTOR 1 .ORG *+2
50 VECTOR2 .ORG *+2

;system input buffer variables

;and so on ...

.ORG replaces the *= assignment found in this and other assemblers. Again, do
not use it to create space within your code. To create internal buffers use
the .BUF [Ubytes] or *= [new pc] command .

. BUF [# of zeros to send]

The value following .BUF determines the number of zeros to be output. This
can be used to create buffers for I/O or space for variables within your code.
The command .BUF 6 would do the same thing as .BYTE 0,0,0,0,0,0.

Situations may arise where you do not know exactly how many zeros you want
to write, only the destination address to which you wish to write them. The
command .BUF DESTINATION-* would do the job as would *=DESTINATION.
In either case the value of DESTINATION must be previously defined or
immediately calculable.

Usually variable tables sit on top or lie at the bottom of a program or are off
somewhere else completely in memory and do not contribute to to the size of
the object code. If for some reason an internal variable table is needed, the
.BUF or *= commands should be used. Following they are used interchangeably
although you might not want to do so purely for aesthetic reasons.

Page 18

10 JMP ENDOFTABLE
20 STARTOFTABLE =*
50 VARI .BUF 1
60 VAR2 *=*+1
70 FLCI .BUF
80 FLC2 *=*+ 1
90 PTRI .BUF 2
100 PTR2 *=*+2

400 ENDOFTABLE =*
410

;code being sent to disk
;more code
;jump over internal table

;internal vars

;etc.
;etc.

;code continues

Note: any symbol used in an operand to either .BUF, .ORC or *= must have
already been defined. Forward references will not work since the number of
bytes generated must be calculated on the first pass.

To recap: .ORC [EXPR] may be used to set any value to the program counter
"*,, variable at anytime and will never result in output. It is most useful in
defining load (header) addresses prior to the creating of .OBJect files and for
creating un-initialized variable tables at the end of object files .

. BUF [EXPR] will always result in the output of the expressed number of zeros.

= [EXPR] will generate zero filler bytes to the new ",, value only after you
have begun sending bytes to an object file; it may not then be used to reverse
the program counter .

. OFF [address]

. OFE

The .OFF command is used to write code destined to execute at a different
location than where it originates. The operand portion tells
POWER ASSEMBLER where the code will finally execute. This should prove
invaluable in programming for more than one micro-processor at a time or in
situations where you are writing code that will be moved before it is run. The
.ORC command could be used to do the same thing by resetting the program
counter after output had begun then back to the proper in-stream value (by
using some symbolic expression) after the offset coding had finished. This is
not as convenient as or as clear as using .OFF DESTINATION to create
another temporary program counter .

The .OFE command simply ends offset coding and resumes with the original
program counter at its new address. If assembly is DISplayed for OFFset
coding the program counter, at first glance, may not appear to have been
affected; however, symbol values, JSRs and other absolute references to it will
correspond to that defined by .OFF, not as originally set with .ORC and as
displayed.

Page 19

The following program moves a short "POKEHELLO" routine into the C-64
cassette buffer, calls it, then continues.

5 SCREEN =1024 ;(C-128 in 40 column mode)
10 *= 20000 (C-128 *= 3000) ;or where ever
20 LDX ULENGTH'TO'MOVE-1
30 - LDA CODE'TO'MOVE,X
40 STA POKE'HELLO,X
50 DEX
60 BPL-
70 JSR POKE'HELLO
80 JMP CONTINUE
85:
90 CODE'TO'MOVE =*
100 .OFF 832
110 POKE'HELLO =*
120 LDX UO
130 - LDA MSG,X
140 STA SCREEN,X
150 INX
160 CPX UMSGLEN
170 BNE -
180 RTS

;use of temporary sym

;cassette buffer

;temp sym used again

190 MSG .SCR "HELLO":MSGLEN =*-MSG
200 LENGTH'TO'MOVE *-POKE'HELLO
210 .OFE ;back to normal
215:
220 CONTINUE =* ;and on we go ...

"_"

• OFF would be useful in creating code destined to execute in the 1541 disk
drive after being loaded into the C-64 as part of a larger program.

For the Commodore 128 only, moves like the above are quite useful in
programming the C-128. POWER ASSEMBLER, for example, before assembling,
moves "relay" code Into Basic's Input buffer ($200) where it can see and be
seen by all other banks. This allows POWER ASSEMBLER to access Kernal
ROM, registers and user defined routines and memory which would be
otherwise Invisible. .OFF would also be useful In creating code destined to
execute In the disk drive after being loaded into the C-128 as part of a
larger program •

. MEM; output to memory

This command takes no operand. It simply instructs POWER ASSEMBLER to
output code directly into C-64 memory. The code will be "poked" Into
memory at the .ORG address •

• MEM is a toggle command. The first occurrence initiates memory output, a
second turns it off, a third back on again, and so on. This allows selected
portions of a program to be output to memory. Fairly large programs can be
worked on and debugged without going to disk.

Page 20

.BANK [0-15] (C-128 only)

. DlS

This selects an output bank for in memory operations. Bank 15 is the
default. In bank 15 all Basic and Kernal ROM is visible which means these
routines can be called directly and that special interrupt handling or
squelching will not be required. However, there is not all that much RAM.
Chances are that large ML programs will not finally execute in bank 15.
The .BANK command can be used in conjunction with .MEM to direct object
code to memory in any bank .

When this is used the complete assembly process will be shown on screen.
Included in this will be the following from left to right:

1. The Basic line number of the source line being assembled, or if it is an
un-numbered ASCII file being assembled from disk, then the sequence
number of the source line in the file.

2. The current program counter value.

3. One, two or three hex values representing the object code, if any is
generated.

4. The actual source line .

. DIS is an on/off toggle command. This allows for display of selected
portions only of the assembly. In the display mode, when assembly is
finished, the symbol names and values, as defined in the program, will be
listed. If this is not wanted then use .DIS to turn display off at or near
the end of your source. If only the symbol listing is wanted then turn
display mode on by using .DIS for the first time as the last source command .

. DlS P

This will direct full display to a printer as well as to the screen. Use the
.DIS P command to generate detailed source/assembly listings. Paging is
controlled by POWER ASSEMBLER. Three things are assumed.

1. The paper is positioned at the top of a page. Only four blank lines are
allowed for per page so don't start down too far or the perforated edges
will be printed over.

2. Paper is of the standard size (ie. 66 lines per page).

3. Continuous form feed is acceptable. It is doubtful that anyone will want
source listings on separate pieces of paper. Be sure enough paper is at
hand. Once printing has begun the only way to stop is to abort the
assembly via RUN STOP.

The symbol table will be displayed to the printer in two column format.

Page 21

.DIS E

The E option sends only error messages to the printer. It is really like no
display except that messages normally only sent to the screen with display
off are also sent to the printer. These include (1) the names of any disk
files accessed during the assembly, (2) error messages and (3) the hex object
range at the end.

When disk assembling a large source file or a number or them together there
is an ever-so-remote possibility that more errors will occur than can fit on
the screen. Rather than franticly scribbling down filenames and line numbers
as mistakes go whizzing by, use .DIS E to send everything to the printer
and go have a coffee.

Again, error messages are sent to the screen even when no display mode is
used. The only way to avoid seeing them is to either not make any, or to
not look at your monitor .

. OUT [operand) (C-64 only)

If you are burning an EPROM, outputting to tape or modem, or perhaps
encrypting your code you might need to use the .OUT comnumd. Beginning
on pass two, POWER ASSEMBLER JSRs to the address following the .OUT
with each byte of code. This byte will be in the accumulator. Do what
you like with it then RTS back to POWER ASSEMBLER and wait for the
next.

RAM from 820 to 998 is not used by POWER ASSEMBLER, neither is the
free memory from 679-767. Memory from $COOO to $CFFF is available and
all of basic RAM is at your disposal. If you must use zero page in your
routine you should probably save and replace any values •

. OUT [operand) (C-128 only)

If you are burning an EPROM, outputting to tape or modem, or perhaps
encrypting your code you might need to use the .OUT command. Beginning
on pass two, POWER ASSEMBLER JSRs to the address following the .OUT
with each byte of code. This byte will be in the accumulator. Do what
you like with it then RTS back to POWER ASSEMBLER and wait for the
next. You should use the .BANK # command to tell POWER ASSEMBLER
which bank your routine is in if it is not in bank 15.

The tape buffer ($bOO-$bff) is not used by POWER ASSEMBLER. The RS232
buffers ($cOO-$efO are unused during assembly. Zero page, however, is used
extensively. If you must use zero page in your routine you can use the
c-128's re-locatable zero page feature to point to your own while executing
your code. POWER ASSEMBLER's zero page is actually situated at $feOO.
Be sure to point back to it before returning. Here is how it might be done:

10 .ORG $BOO
20 .MEM
30 LDA #$OC
40 STA $D507
50

;tape buffer
;output to memory
;put zero page at $cOO
;z pg pointer registe~
;do your thing

Page 22

;in here
;using your z page

100 LDA #$FE
l10 STA $D507
129 RTS

;point z pg. to POWER ASSEMBLER's
;at $feOO

It is assumed that the above code executes in a BANK where I/O registers
are visible. POWER ASSEMBLER will have already SEI disabled interrupts.
Do not enable them in your routine. Writing to $D509 will reposition page 1
(the system stack). If you make use of this, set it back to 1 when you are
done .

. OBJ "FILENAME"

Quotes are optional in enclosing any disk filenames
POWER ASSEMBLER source unless a driven is specified
contains a colon). They are used here for clarity only.

defined within
(ie. the name

Use the .OBJ command to "save" ML programs to disk. Files are not opened
until the output buffer (beneath Kernal ROM) is full on the second pass.
Object files will be closed except during actual output from buffer. Large
files will be reopened to append. Having files open only when necessary
makes POWER ASSEMBLER compatible with C-64 FASTLOAD cartridges (which
must kill open files).

If a fatal error occurs on pass one or execution is halted via RUN STOP
there will be no empty or unclosed file to have to deal with as is the case
with some assemblers. If execution is aborted during pass two after output
has begun, due to some fatal error or user intervention, the file is always
first closed.

The current program counter is sent as the file header; therefore, an
.ORG [address] command will usually directly precede an .OBJ "OBJECT-FILE"
program maker. The header address composes the first two bytes of the
actual disk file and tells the Basic operating system where to put the code
when it is LOAD'ed ,8,1 into memory (C-128 only, use BLOAD'ed).

Any number of OBject files may be created during a single assembly. Each
time POWER ASSEMBLER encounters a new .OBJ "MYPROGRAM" the last is
closed before the new one is opened. Of course It will have a different
name.

If the output device is not to be device 8 then the .DVO # command should
be used to select the device number to use. If the drive is not drive zero
use the filename to set the drive number.

10 .OBJ "O:ZIP" ;create on drive 0

500 .OBJ "1:ZANG" ;create on drive

1000 .DVO 9: .OBJ "O:ZOWIE" ;use device 9, drive 0

Again, multiple object files which will later be LOAD' ed all over memory, but
assembled as one job and sharing a common symbol table, are possible.

Page 23

.BAS "O:FILENAME"

This command allows for the automatic merging of Basic and assembler
source. These programs can be LOAD 'ed, SAVE'd and RUN just like Basic
ones.

After the .BAS command, write ordinary Basic program source with one major
enhancement. In this Basic the SYS, PEEK and POKE commands will be able
to refer to symbol table values, as defined in the assembler portion which
will follow, by name. These symbol names must appear in quotes. The Basic
part may be quite short:

100 .BAS "O:YOU-NAME-IT"
110 SYS"MYCODE"
120 END
130 MYCODE =*
140 ;brilliant assembler source ..•

An END on a line by itself must follow the Basic, telling
POWER ASSEMBLER that the source type has changed. The END line will
not appear as part of the final object program. If the above source was
assembled and the created program "MYCODE" was LOAD'ed and listed, it
would look like this:

110 SYS 2063 (c-64 only) 110 SYS 7183 (C-128 only)

And that is it! On top of this SYS 2063 (or SYS 7183 for C-128) invisible
to the listing, would be the ML code. Trying to modify the above program
without re-assembling is not advisable. For instance, adding a line;

100 PRINT "MY NAME IS FRED, I HAVE NO HEAD"

••. would list okay, but crash when run. The code which had been at 2063
or 7183 would now be further up .

. BAS "NAME" is somewhat like .OBJ "NAME" in that it causes a program file
to be written to disk. There are, however, two differences.

1. Do not use the .ORG command to initialize the program counter for .BAS
created files. POWER ASSEMBLER will automatically set it to $801 on
the C-64 or $CO 1 on the C-128, which is where Basic programs begin.

2. Do not try to use .BAS more than once in your source. Only one hybrid
program can be created at a time.

Here is
program.
table.

another exceedingly simple example of an ML - Basic source
Notice how completely Basic is able to access the ML symbol

10 SYS 999 ;calls POWER ASSEMBLER
20
30
40
50
60
70

.BAS "O:SIMPLE" ;name of basic prg
POKE"CHARACTER",ASC("X")
SYS"PRINT'X'ROUTINE"
END
;****now the assembler part****
CHARACTER =*: .ORG *.1

Page 24

80 PRINT'X'ROUTINE LOA CHARACTER
90 JMP $FFD2

If you use POWER ASSEMBLER to assemble this, then DLOAD "SIMPLE" and
RUN it, you will see an X printed on your screen (be still my heart).

Basic may even use the symbol table names in expressions. Anywhere the
actual value is needed the quoted symbol may be used. Lines like;

100 FOR N=O TO PEEK("TABLE'LENGTH")
110 POKE"TABLE"+N,PEEK("DATA"+N)
120 NEXT:REM MOVE DATA TO TABLE

... could be used. I f any of the symbol names referenced were not defined
in the assembler source an UNDEFINED SYMBOL error would ensue •

. LINK "O:NEXTSOURCEFILE"

This is one way of chaining a number of source files together. The. LINK
command will appear at the end of each but the last source file in the
chain. It causes POWER ASSEMBLER to LOAD the source file specified into
memory before continuing with the assembly. The last program in your chain
will end with a .LOOP "O:FIRSTSOURCEFILE" line. The names used will of
course be the names you have DSAVE'd your files to disk under.

If you make use of the "+" forward referencing temporary label then the
largest source file should be the first in the chain. The address stack for
these labels builds up from the end of the program in memory when assembly
begins. If a longer source file is .LINKed in it will overwrite these
addresses spoiling everything .

. LOOP "O:FIRST-FILE"

This tells POWER ASSEMBLER that there are no more files in the LINKed
chain. The file name specified by .LOOP will be the first file in the
chain. On pass one this file will be loaded into memory and pass two
begun. On pass two the .LOOP command signals the end. Any output files
are closed and control is returned to Basic. The source program ending with
the .LOOP instruction will be sitting in Basic's program buffer.

For the Commodore 64 only, .LINK .•. LOOP memory chaining allows you to
take full advantage of FASTDISK utilities which intercept Basic's LOAD
vector. Again though, make sure that the largest source file comes first if
you are using forward "+" temporary symbols .

. FILE "O:SAVED-SOURCEFILE"

This is a very convenient way of chaining source files together. The FILE
command tells POWER ASSEMBLER to assemble the specified source file
directly from disk then to return to the next line of the in memory source
and continue. A very short program containing nothing but .FILE statements
can be used to assemble multiple giant source programs as one. It might
look like this:

Page 25

SYS 999 (SYS 4000 for c-128) ;call POWER ASSEMBLER
10 .FILE "O:INITIALIZE"
20 .FILE "O:PROCESS"
30 .FILE "O:THESEROUTINES"
40 .FILE "O:THOSEROUTINES"
50 .FILE "O:MOREROUTINES"
60 .FILE "O:MESSAGES"

With this type of setup the assembly process and file chain can be very
easily modified. To add a source file called "PROTECTION" to the chain
would be as simple as adding a line 70 .FILE "O:PROTECTION" to the rest
before running (assembling). Changing the order in which the files are
assembled would involve merely switching a few line numbers. To save the
symbol table part way through would entail only Inserting the line
15 ".SST "O:INIT-SYMS" for example. Altering display options, I/O device
numbers and assembly modes (eg. .FAS or .MEM) would also not involve
loading, modifying and resaving large source files.

It is not even necessary to save the changes made to the memory-based file
chaining program before assembly; it will still be there afterwards.

The relative sizes of .FILEd source programs are unimportant because they
are read directly from disk. The temporary label address stack will always
be completely safe. The amount of memory available for .MEM output and
symbol tables is also maximized by this method of source file chaining.

Large source files and even .LINKed source files may contain .FILE
statements. Control will always return to the next line after the specified
source has been assembled in from disk. .FILE assembled source, however,
may not contain its own .FILE or .LINK commands. This type of nesting
would lead to great unhappiness were POWER ASSEMBLER to attempt it.
The .LINK and .LOOP commands are Ignored in .FILE assembled source •

• SEQ "O:ASCIISRCFILE"

This works exactly like .FILE except that the source is expected in ASCII
format, not Basic. This makes POWER ASSEMBLER highly compatible with
almost any editor or word processor.
With POWER ASSEMBLER you can combine types to produce a single, ML
object program using (1) in-memory Basic type source created on the C-64 or
c-128 Basic editor, (2) .FILE'lng in SAVE'd source programs and (3) .SEQ'lng
in source created on the ASCII editor of your choice.

Source files specified in the .SEQ instruction must have the following
attributes:

1. They will be In pure ASCII form. No screen code and no tokenlzatlon.

2. Lines will not be numbered. POWER ASSEMBLER will attach a sequence
number to each line In a file for display purposes.

3. A carriage return, Ie. CHR$(l3), will be the last character of each line,
and at least two of these will be at the end of each source file.

Page 26

. TOP

4. Colons may still be used to link statements on a line, but no line should
be longer than 255 characters.

A large source program in this format might possibly assemble slightly faster
than if it were in Basic source format. It would not be necessary for
POWER ASSEMBLER to un-crunch tokens or to read in the four bytes of
overhead associated with link and line number •

In some situations it may be desirable to save only a portion of the symbols
defined or used in a program. The .TOP command lowers the symbol table
top in so far as any future .SST is concerned, permitting the saving of
intermittent symbols only. Symbols defined prior to .TOP, although accessible
to the program in every other way, will not be saved. Unless one has a
penchant for empty files one should not attempt to .SST immediately
following . TOP. Here is probably the most practical application of . TOP:

100 .LST "O:HUGE-SYMTAB"
120 .TOP
130

500 .SST "O:NEW-SYMS"

;will not affect coding
;now a whole bunch
;of neat stuff using the
;loaded symbol table
;saves only the newly defined symbols

Numerous, completely exclusive symbol tables can be saved from within one
assembly just as numerous separate object files can be created.

With • TOP it is possible for two programs to access each other's symbol
tables without re-definition problems or phase errors caused by late zero page
assignments. If. TOP is not used then every symbol defined prior to the
.SST command will be saved .

. SST "O:SYMBOL-TABLE-NAME"; save symbol table

This can be used to save all or portions of a symbol table. If the above
were the last line of your source program all of its symbols might be saved
to a file under the name you used.

Use .SST to create a file of kernal routines, important register addresses and
memory locations for use in all your programs. There are clear advantages
to this.

1. You don't have to type them all in every time you start something new.

2. Your source files will be shorter without the numerous assignment
statements.

3. Certain consistency and uniformity will be lent to your source programs.
The names of key symbols will not change from one project to the next •

• SST and .LST provide an excellent way of modifying large ML programs
without having to re-assemble the entire system each time changes are to be
tested.

Page 27

Imagine that you have developed a sophisticated word processor or game or
assembler or something and you now wish to add to it a fancy new feature.
You know perfectly well you're not going to get it right the first, second,
third or maybe even the twentieth time. We're talking tricky here. The
thought of re-assembling the fifteen or so chained files involved with each
new try is not the most fun thing you could possibly ever imagine. You'd
probably spend more time waiting then working. Try this:

1. Put a call to the new routine in the main source and also assign therein
an address to it. This will not be the final destination, just a free, safe
place to work on it. So somewhere in the main source will be a line
like 5000 JSR NEW'FEATURE, and a line like 50 NEW'FEATURE = 50000.

2. Now assemble the whole thing.
.OBJ "CREAT-BIC-ML-PRC" and
.SST "ITS-SYMBOLS"

Be sure to create an object file via an
to save its symbols at the end via

3. You should have then a BLOAD'able version of your program and a copy
of its symbol table, ie. the addresses and values of all of the routines,
and variables contained in or used by it.

4. Write the new routine. You don't have to get it perfect right off. It
should .ORC originate at the address you told the main program it
would. The first thing this source will do is load in the symbol table of
the main program with a .LST "ITS-SYMBOLS" line .

. LST "O:ITS-SYMBOLS"

This will load in the specified symbol table for use by your program.
... carrying on with our example

5. BLOAD the main program in then assemble the new module (routine) right
into memory using .MEM. This new module will have as complete access
to the main one as if they had been assembled together. Any routines in
the large one will be call-able by name from the new one. Any flags,
registers or variables in the main one are also at the disposal of the
new part.

1'. So try the whole thing out. Run it. Crash-boom, or yuk, or whatever.
It didn't work but that's okay because you planned it that way. At
worst you'll have to re-boot POWER ASSEMBLER, LOAD your ML code
and the source for your test program before you can try again. At best
you wont have to do any of that before you begin making corrections.

7. Sooner or later you'll get it perfect. Believe. Now remove the line
from the main source which assigned the test address to the routine and
either .FILE or .LINK assemble them together the way you would have
liked to do in the first place if life wasn't so full of mistakes.

If you .LST symbols in before you define any of your own (ie. first),
re-definitions will trigger error messages when they occur. Duplicates will
not be loaded in. In the case of labels this is usually convenient since it is
the latest occurrence of a label that you are probably interested in anyway.

Page 28

.BYTE [onebytevalues •...•... l

This is used to place one byte value(s) into your code. Here are a few
examples of .BYTE:

10 .BYTE 0.2.4.8.16.32.64.128
20 .BYTE <1000.2000.3000
30 .BYTE >SUB1.SUB2.SUB3
40 .BYTE "a","b","c"+128

;powers of 2
;Iow bytes only
;high bytes only
;ascii values

Notice that commas separate the operands and that no spaces are included.
Also notice how the < and > work: they affect the entire string of values
and should not be repeated. This will make setting up high and low byte
address tables more convenient .

. WORD [twobytevalues •...•... l

Use . WORD to set up address tables. All values following will be treated as
two byte values. This means that 10 .WORD $FF.$FF would have the same
effect as 10 .BYTE O.$FF.O.$FF.

Here are some examples of .WORD:

10 .WORD DESTINATION-l ;setup rts jmp
20 .WORD 12*4096.$cOOO+OFFSET;expressions

It would be pointless to use > or < in conjunction with word data since the
resulting values would never exceed one byte .

. ASC "***ASCII TEXT***"

Use the .ASC command followed by any quote-mode-typeable string of ASCII
characters you wish placed in your code.

The opening quote is not optional. Omitting it will result in a "QUOTE
EXPECTED" error message.

A closing quote is optional unless of course you wish to include some blanks
at the end of your text entry.

For the Commodore 64. the following is a staple routine for printing messages
in ML. It is almost always used in conjunction with the .ASC pseudo-op.

50 SYS 999 ;again
70 .ORG 820 ;sys 820 after
80 .MEM
90 PTR =251
95 PRINT =$FFD2 ; kernal rom
100 JSR WRITE ;print message routine
110 .ASC "***HI MOM***":.BYTE 13.0
120 RTS
130 WRITE =*
140 LDY #0
150 PLA:STA PTR+l ;message address-Ion stack
160 PLA:STA PTR
170 - INC PTR

Page 29

180 BNE +
190 INC PTR+ 1
200 + LDA (PTR),Y
210 BEQ +
220 JSR PRINT
230 BNE -
240 + LDA PTR+1:PHA
250 LDA PTR:PHA
260 RTS

;to line 200

;to line 240

;jump to line 170
;restore rts address past zero

The preceding WRITE routine works much the way Basic's PRINT command
does in that following text is printed. A zero marks the end of WRITE
text. If you examine this routine you will see how the 6510 stack works
during JSR and RTS executions.

The C-128 only, has a new kernal routine to print out strings of text. This
text cannot be longer than 255 characters and must be terminated by a null
(zero).

Here is an example of this routine used in conjunction with the .ASC
pseudo-op:

50 SYS 4000
70 .ORG $BOO
80 .MEM
90 FOREVER =*
100 JSR $FF7D
120 .ASC "HI MOM":.BYTE
130 - JSR $FFE4
140 BEQ -
150 JSR $FF7D
160 .ASC "BYE MOM":.BYTE
1 70 JMP FOREVER

13,0

;again
;sys 2816 after

;kernal primm routine

;kernal get keystroke
;loop if no key
;primm routine again

13,0

Note: don't try JMPing to $FF7D .

. SCR "***SCREEN CODE VALUES***"

• FAS

.SCReen works the same as .ASC except that following text is converted to
its screen code equivalent. That is the value you would use to poke the
character directly to the screen.

The line 100 .SCR "A" would code the value 1 whereas the line
100 .ASC "A" would code the value 65. This should make life a little easier
for programmers who maintain menu lines and displays by "poking" character
values directly to the screen •

For the Commodore 64, .FASt switches off the screen. This should increase
in-memory assembly speed by about 20 percent.

For the Commodore 128, .FASt switches the micro processor into the 2mhz
mode and turns off the video. This should at least double the in-memory

Page 30

assembly speed.

There is no danger of mlssmg any important messages by doing this. If any
errors are encountered the screen is turned back on for you. It would be
pointless, and a waste of time to use .FASt and .DISplay together .

. BURST (C-128 only)

. PSU

The .BURST command is for disk based (ie. .SEQ and .FILE) assembly using
the 1571. When .BURST is used source files, instead of being read via
kernal routines a line at a time from disk, will be burst loaded into memory
at the bottom of bank 1. From here they will be accessed RAM DISK
fashion by the assembler. This more than doubles the speed of disk based
operation making this almost as fast as .LINK/.LOOP load chaining which is
always burst driven.

If you are using the .FILE or .SEQ commands, have a 1571 and can spare
low memory in bank 1 during assembly then .BURST is highly recommended.
It need only be used once at the beginning of your source. If you are
using more than one drive and only one is a 1571 the others will not be
affected .

.PSeUdo allows for the use of mnemonics like LAX, DCM, INS, SKB, AXS,

.etc to code non-standard opcode. The reliability of some of these are
somewhat moot. I would suggest you you execute them with interrupts
disabled. Some very widely distributed commercial programs make extensive
use of non-standard opcode both to conserve space and to confuse
disassembly.

Like most inherent (operand-less) pseudos it is a toggle command. Using it
for a second time will turn the feature off. You will probably want it on
only for those portions of code which make use of non-standard opcode. As
with standard mnemonics like LDA and INX you will have to also avoid giving
symbols in your program the same names as non-standard mnemonics when
.PSU is enabled.

See the table appended to this manual for a full listing and brief
descriptions of the pseudo mnemonics which POWER ASSEMBLER recognizes .

. IF [operand]; conditional assembly

When the expression following an . I F is not equal to zero then assembly will
proceed until an .ELSE is encountered, then skip to an .IFE line marking the
end of conditional assembly or another .ELSE.

When the value following .IF equals zero then POWER ASSEMBLER will
ignore everything until an .ELSE or an .IFE is found. Assembly will resume
there.

Page 31

.ELSE

This is where assembly will pick up when the value following the previous
.IF was zero. If a second (third, fourth .•.) .ELSE follows, assembly will
alternate between them .

20 . IF FLAG
30 LOA "A":JSR $FFD2 ;kernal print
40 .ELSE
50 LOA "1":JSR $FFD2
60 .ELSE
70 LDA "B":JSR $FFD2
80 .ELSE
90 LDA "2":JSR $FFD2
100 .ELSE
110 LOA "C":JSR $FFD2
120 .ELSE
130 LOA "3":JSR $FFD2
140 .IFE ;end of conditional assembly
150 LOA n!":JMP $FFD2

If flag = 0 in the above then the assembled code would print "1231",
otherwise the code would print "ABCI"

Another more useful application of .IFE .ELSE conditional assembly would be
to protect your indirect jumps from accidentally falling on page boundaries.

10 JMP (INDIRECT)

500 .IF <*+1
510 INDIRECT =*
520 .WORD DESTINATION
530 .ELSE
540 NOP
550 INDIRECT =*
560 .WORD DESTINATION
570 .IFE

;to destination

;check for page boundary
;not page boundary

;pass page boundary

;end of conditional assembly

No re-definition of a symbol error would occur during the above assembly.
Only the .IF or .ELSE portion of the actual source would be assembled.
This would depend on whether or not <*+1 (the low byte of the program
counter + 1) was zero.

If you are using a number of .ELSEs you might want to take advantage of
the fact that pseudo-ops can be extended and tack some alternating character
on telling you which condition each else belongs to, ie .

. ELSEl, ... ELSEO, ... ELSEl, ... ELSEO, etc.

Note: Don't try JMPing to $FF7D. Never stick a label in front of an
.ELSE or an .IFE. POWER ASSEMBLER would look no further and miss the
switch.

Page 32

.IFE

This ends conditional assembly. Everything following is assembled.

MACRO-OPS

Three of the most common activities in machine
(1) comparing pointers, (2) filling, ie. erasing, ranges
(3) moving ranges of memory. POWER ASSEMBLER has
to make short work of these traditionals while enhancing
reducing the size of your source.

language involve
of memory, and

provided macro-ops
the readability and

All require operands which are expected to be in the form of zero page
pointers. While this may seem a trifle inconvenient at first glance it makes
the resultant code much more flexible.

For instance, you do not have to use the .MOVE macro every time you want
to relocate some range of memory. It would be much more efficient to use
it once as a subroutine (ie. preceded by a label and followed by an RTS)
and to JSR to it with its three pointers set to your specific needs on each
particular occasion. This would not of course be possible if this macro-op
took constants as operands.

Another advantage to taking pointers is that you can choose precisely what
addresses will be used by generated code. Only the pointers you specify and
the processor's registers are manipulated. Bask in the joyous awareness that
your data and variables will always be safe when macro coding; trip on the
absolute power you exercise over memory usage when employing
POWER ASSEMBLER's macros.

I have come into contact with a number of very proficient and talented,
professional assembly language programmers over the last several years and
not one has confessed to having ever used macros. I believe this is because
by their very nature ML programmers enjoy the exquisite control they have
over their machines and do not wish to relinquish this to something
"standard." Perfection is the order. Custom subroutines seem to hold more
appeal than built-in, space-wasting, other-people's macros.

However, the few that have been selected for POWER ASSEMBLER are
universally applicable. To overcome your apprehensions about using them I
would suggest that you use UNASM to disassemble the code generated by
each. You will find it totally re-Iocatable and non-self-modifying as well as
fast, efficient and correct .

. TEST ZEROPTRI,ZEROPTR2

In situations where you wish to compare two addresses designated indirectly
by zero page pointers you could use the • TEST macro-op. The carry returns
clear if the first was pointing to a lower address, otherwise it will be set.
The Z flag is set if they both point to the same address.

Page 33

.DUMP BEGINPTR,ENDPTR

This dumps the contents of the accumulator to a range of memory. It might
be used quite effectively to clear buffers or hi-res screen areas. The first
pointer must designate the first address to be filled and the second pointer
the last. Make sure that they are properly set and that the A register has
been loaded with the desired value before you use (or call the subroutine
using) the .DUMP command. In the following exciting demonstration of it
the 40 column screen is filled with "B"s

10 SYS 999 (C-64) SYS 4000 (C-128)
20 .ORG 820:.MEM
30 SCREEN =1024 ;in 40 column mode for C-128
40 LDA (SCREEN:STA TOPPTR
50 LDA >SCREEN:STA TOPPTR+1
60 LDA (SCREEN+999:STA BOTPTR
70 LDA >SCREEN+999:STA BOTPTR+1
80 LDA "B" ;screen code for "B"
90 .DUMP TOPPTR,BOTPTR
100 RTS

.MOVE BEGINPTR,ENDPTR,DESTINATIONPTR

This will generate the code to move the range of memory specified by the
first two pointers to begin at the address pointed to by the third pointer.
The range can be moved in either direction any distance without overwriting
itself. In other words, it does not matter whether the destination is above or
below the beginning of the range to be moved or If the distance is very
small. Memory will still be moved intact. This macro is used in EDITOR.64
or LABELGUN (C-128 only) to shift ranges of source up or down when
inserting or deleting text and replacing strings with others that are longer or
shorter. Of course the memory being moved (your source) cannot be
corrupted in any way.

Write the following short program to locate in the cassette buffer.

10 SYS 820
20 .ORG 820:.MEM for C-64
30 FROMPTR =251
40 TOPTR =253
50 DESTPTR =65

SYS4000 for C-128
.ORG $BOO:.MEM for C-128
;safe basic zero page

60 .MOVE FROMPTR,TOPTR,DESTPTR

Now use the UNASMbler to disassemble and examine it. Notice that only
the pointers you defined and the micro processor's registers are used. Try
moving some memory around. Convince yourself that .MOVE works and is
safe. Almost every ML program ever written uses memory moves. Getting
comfortable with this POWER ASSEMBLER macro can save you time and
trouble.

WRITING YOUR OWN COMMANDS

There is space In POWER ASSEMBLER's pseudo-op stack for up to five new
commands. Each one takes up five bytes of memory. The first three, which

Page 34

are currently spaces will be replaced by your own three-letter command
which you will make up all by yourself; the next two will be the address-l
of the routine you want to execute when the assembler comes across this
command.

A symbol table for each version of your assembler is on the system disk. To
display one use the following technique:

10 SYS 999 (for C-64)
20 .DIS
30 .LST BUDDYSYMS

SYS 4000 (for C-128)
;to display to screen

The symbol you will use to get your commands into the code is called
PUT'YOUR'CMDS'HERE"; and nothing could be easier than putting your
commands there. Let us create a new feature for POWER ASSEMBLER
called "fun"; every time the pseudo-op .FUN is encountered in your source
POWER ASSEMBLER will inform you that fun is being had; what could be
nicer?

10 SYS 999 (for C-64) SYS 4000 (for C-12S)
20 .LST BUDDYSYMS ;so you can use them
30 .ORG PUT'YOUR'CMDS'HERE
40 .MEM ;now we put "fun" on the stack
50 .ASC "FUN" ;no period here
60 .WOR FUNROUTINE-l ;address of new useful routine less one
70 .ORG 832 ($BOO on C-12S) ;we'll put it in the cassette buffer
SO FUNROUTINE =* ;powerful new command
90 JSR MESSAGE ;POWER ASSEMBLER's print messages
subroutine
100 .ASC "WHEEEE!
110 .BYT 13,0
120 JMP NEWLINE

THIS IS FUN."
;must end with zero
;POWER ASSEMBLER takes over

After running this, run the following:

10 SYS 999 (SYS 4000 on C-12S)
20 .FUN

Your "fun" message should have been printed twice: once on each pass. If it
wasn't then it's your fault. Fix whatever you did wrong, try again, and be
more careful this time, eh.

IMPORTANT ROUTINES AND LOCATIONS

Every source line is de-tokenized into memory beginning at the address of
the BUFFER symbol. A zero byte marks the end of that line.

If you generate output you should call POWER ASSEMBLER's NEWPC
routine. First set BYTES to the appropriate value, not greater than three.
Put code generated at OUTPUT, OUTPUT+l and OUTPUT+2 as necessary.
You may call NEWPC wore than once (ie. in a loop). When you are done, a
JMP NEWLINE; passes control back to POWER ASSEMBLER.

If your command takes an operand you can immediately JSR the
EVALOPERAND routine. Any valid POWER ASSEMBLER expression will be

Page 35

evaluated and the value returned in SUM and SUM+I.

PASSNUM will be 0 on pass 1 and 255 on pass 2.

Try changing the previous .FUN command so you can use .FUN 100 to print
the HfunH message 100 times, but only on pass 1.

Of course there are many, many more routines and flags and variables that
you will want to become familiar with if you plan to really get intimate
with the inner workings of your assembler. You have symbol tables. You
have a powerful unassembler. You have fun.

TEMPORARY SYMBOLS

TEMPORARY LABELS: - / +

The multiplication, division, addition and subtraction characters each have two
possible uses. In expressions, if H*H is an arithmetic operator then values on
either side are multiplied (eg. 12*4096); whereas, if it is used as a symbol it
will represent the program counter (eg. LABEL =* or *=*+4). This is standard
use of H*H and is mentioned only to illustrate traditional dual functioning of
one special character.

In POWER ASSEMBLER source the H+H, the H_H and the H/" also serve two
purposes. In addition to their standard application in arithmetic, they may
be used as temporary labels. Many ML programmers don't like having to
think up symbol names for numerous, routine, short branches. This is
especially so in very long programs after all variations of the labels SKIP
and LOOP and BACK and AHEAD and OVER and so on... and so on... have
been exhausted. Objections to using these often random symbols are based
on the following:

1. Time and effort are wasted in deciding on their names and typing them
in, each at least twice.

2. They have a tendency to camouflage more meaningful symbols, making it
harder to visualize what is happening.

3. Symbol tables become unnecessarily large, wasting memory and slowing
things down.

Judicious use of POWER ASSEMBLER's three temporary flags smartly
overcome all of these difficulties.

TEMPORARY BACKWARD REFERENCING

When the H_H is used as a symbolic operand, the last occurrence of it as a
label is referred to. The command BNE - will code a conditional branch
back to the last line flagged with a "_H character. Here is how it might be
used in a simple time delay routine:

100 WAIT =*
110 LOX 110
120 LOY 110

;name of subroutine
;initlalize x and y

Page 36

130 - DEX
140 BNE - ;loop back until x=O
150 DEY
160 BNE - ;same for y
170 RTS

Up to three minus signs may be used together as a symbol (eg BCC ---) to
refer back as far as the third last H_H flagged line; only the last three are
remembered. The minus sign may be used as a label again and again in your
source without re-definition errors. You must be careful that when you use
H_H characters symbolically that the line on which the referenced one has
occurred as a label is the one you want to access (.eg branch to). Any H_H
markers prior to the third last one are inaccessible.

TEMPORARY FORWARD REFERENCING

The plus sign, as you may have guessed already, works in just the opposite
way. That is, BNE + would code a conditional branch to the very next
occurrence of H+H as a flag. Here is how one might use it to increment a
pointer.

10 INC PTR
20 BNE +
30 INC PTR+l
40 + RTS

;the low byte

;the high byte

A symbol could have been used instead of H+H, but what a bother, a mess
and a waste of space.

There is no limit to how far forward the next H+H flags may be or how far
back the last H_H flagged lines may be. JMP -- or JMP ++ are valid too.
Within their scope of three, these temporary flags may be dealt with just
like any other symbol. Still, all subroutines and data should be given
meaningful labels even if you could get away with a H+H or H_H temp.

The next three H+H flagged lines may be referenced at any point by using
to 3 H+H'S (eg. BEQ +, BEQ ++ or BEQ +++) as a symbol just as any of the
last three H_H flagged lines may be accessed using 1 to 3 H_H'S.

Don't let temporary labels permit you to become too un-imaginative. Restrict
their use to short, redundant branches.

FORWARD OR BACKWARD

When the H/H character is used as a label it serves as both H+H and H_H,
either of which can be used to reference it. In effect it is as though the
H/H flagged line had both H+H and H_H as a label on it. The JMP - statement
would actually code a jump back to either the very last H_H or H IH flagged
line. A JMP + would code a jump forward to the very next HI" or H+H label
position. In the next example both conditional branches target the RTS in
the middle.

Page 37

10 BEQ +
20 LDA #0
30 I RTS
40 DEX
50 BEQ -

;or whatever
;destination of both branches
;or whatever

TEMPORARY SYMBOL MANAGEMENT

The backward referenced "-" label is handled only on pass two. Only three
addresses need ever be "remembered" by the assembler with regard to it.
The forward referenced "+" can not be dealt with so easily. A table of all
of its occurrences as a flag is created on pass one which is then accessed
on pass two. This table is separate from the normal symbol table and
contains only addresses. It builds up from the end of your source.

If you are using the memory based

.LINK "NEXTFILE" •.
• LOOP "FIRSTFILE"

system to chain source files together and you have made use of any
temporary, forward "+" references you should make sure that the largest file
in the chain comes first; otherwise, a larger file, when loaded into memory
will clash with the "+" address table. Consider disk based .FILE "ANYFILE"
chaining as an excellent alternative to memory based chaining in this
situation.

LABELGUN (for C-128 only)

The C-128 screen editor is an excellent one. With it you can redefine keys,
freeze scrolling, delete ranges, renumber, auto line number and much more.

About the only thing missing when it comes to developing a large program is
sophisticated string handling. To be able to seek out occurrences of and
possibly modify a given symbol (.eg string of characters) instantly throughout
an entire source program is so useful as to be almost essential.

With Bud installed you have this ability. So never strain your eyes scrolling
through screen after screen of source looking for that elusive BUG
subroutine. Just enter the following command:

L,BUG

Every line in your program with the word BUG on it will be listed for you.
Change every occurrences of BUG to CRITTER like this:

C,BUG,CRITTER

In the above case words like DEBUG, BUGEYES and BUGGY would also be
changed. This mayor may not be what you had in mind.

Page 38

To have only whole words considered you would use a period In place of the
first comma.

C.X,EXITROVTINE

This would not ruin all your words containing X's. Only if X occurred as a
whole symbol would it be changed to EXITROUTINE. All those LDX, INX,
STX and TXA commands would go un-molested.

Sometimes the string you seek will contain a Basic keyword but not have
been tokenized by the basic editor. This may be due to its following a DATA
or REM string on a line or because It exists between quotes. In this
situation it is possible that the string you target, even though it looks the
same as In your program, will not be found by Labelgun.

If you have your doubts or If you are after a string you know is in quotes,
do this:

L"ENDING

or

C"STOPTHIS,STOPTHAT

You may put a period at the end of any Labelgun command to add extra
spaces to the end of a string;

L,MODULE.

would find any subroutines whose names ended In MODULE, but probably
not calls to them.

You will find these string handling commands virtually indispensable. Use
them to update label names that have changed their meaning. Quickly locate
routines by name. If you have source for the C-64 around that you would
like to convert to the C-128, Labelgun can help.

Source written on the C-64 editor can be assembled by Bud, but source
written on the C-128 might not work with a C-64 basic environment
assembler because of the much larger set of tokens used on the C-128.

TWO~ONNmNTEDITOR

Buddy-System 64 actually encompasses two machine language development
environments. It is the POWER ASSEMBLER half which has been discussed
so far. Although POWER ASSEMBLER is able to assemble ASCII files from
disk such as can be written on EDITOR.64 (or EDITOR.128) or on most word
processors, its memory based source must be In Basic format. Basic source,
unlike pure ASCII text, is actually a linked list: each line starts with a two
byte pointer to the next. Following this pointer are two more bytes
representing the line number. Next comes the actual text with all Basic
keywords tokenized (ie. crunched). At the end of each line is a zero byte.

While this format does very well for Basic it may not be the most efficient
for assembly language. However, many programmers are comfortable with the

Page 39

Basic editor and source format, have acquired utilities such as POWER-64
which greatly extend its capabilities, and have no desire to switch to a
different system. If you are one of these people then stay with
POWER ASSEMBLER; it was made for you.

LOADING EBUD

On disk is another version of the assembler which can be invoked by entering LOAD "EllUD" ,S
<RETURN> and then RUN. This will result in the editor compatible version of your assembler,
ED-BUDDY.64, or ED-BUDDY.128, and the ASCII editor itself, EDITOR.64, or
EDITOR.128, being loaded into memory. You will not return immediately to basic as is the case
when booting with POWER ASSEMBLER.

EDITOR.64 (or EDITOR.128)

Printed at the top of your screen will be COLUMN: I
cursor will be in the upper left corner of the now
Welcome to our editor!

MEMORY USAGE

LINE:I; a solid
clear text area.

EDITOR.64 commandeers the highest 2K of Basic RAM and sets the top of
Basic to point below itself. Thus it is safe from Basic activities and any
utilities (such as UNASM) which are sensitive to Basic's pointers. Although
2K is quite small by some standards the editor, as you will soon see, is no
weakling.

REPLACES BASIC EDITOR (C-I2S only)

EDITOR.128 effectively replaces the Basic editor insofar as the EBUD version
of your assembler is concerned. Basic is still completely at your disposal,
but you will not be using its line number oriented editor to write your
source on or assemble your source from. EDITOR.128 is short, as editors go,
and easy to learn to use. Nonetheless, a number of very useful features
have been built into it.

4-WAY SCROLLING and PAGING

Begin typing. When you come to the right of the screen instead of wrapping
to the next line as you would in Basic the screen window scrolls with you
to the right. Lines may be up to 250 characters long. With text in memory
you can scroll up, down, left and right by using the cursor keys. You may
also page up and down with the f3/f4 key and page left and right with the
f5/f6 key. This allows you to flip through your source very quickly. The
CLR HOME key can be used to position you immediately to the top or
bottom of your source.

Page 40

SIMPLE INSERT and DELETE

The INST DEL key works pretty much the way it does in basic to add or
remove text one character at a time. the f1 /f2 key can be used to delete
the remainder of a line or to insert a new line. This key can also be used
to split and join lines.

CUT and PASTE

To delete an entire range of text position the cursor at one end of the text
you wish to remove, then press (LOGO) S to Set Range. You will see
[RNG] appear at the left of your status line next to COLUMN: Now move
to the other end of the range of text to cut. It does not matter how far
or near this is. Press (LOGO) D and this text will all disappear. Pressing
(LOGO) S twice in a row takes you out of the Set Range mode.

Once you've cut a range of text you may paste (insert) it back in anywhere,
as often as you like and even move blocks of source between files. To
insert the range simply position the cursor to where you would like it to
begin and press (LOGO) T for Text and presto--there it is again.

You may go back and forth from Basic, clear (new) source and load files
without disturbing cut text so that routines can easily be moved from one
file to another.

FIND and REPLACE

To find occurrences of any word or words in your source, press (LOGO) F
for Find. This will temporarily position you on the status line. Following
the "OLD:" prompt, enter the string of characters you would like to find.
When you are done press (RETURN) to get back to where you were in your
text. Move to where you would like the search to begin (to search all your
source press (SHIFT) CLR HOME to go to the top) then press the f7 key.
Every time you press f7 your cursor will move to the next occurrence of the
target string you entered until you reach the bottom of your source.

If you would like this target string replaced in your source with something
else, press (LOGO) R for Replace. Again you will move to the status line
where following the prompt "NEW:" you will type in whatever you would like
to change the "OLD:" stuff to.

You may proceed in two ways: (1) If you press f7 only the next occurrence
of the old will be replaced with the new. (2) if you press f8 then all
occurrence following will be changed and you will finish at the end of your
source.

LOADING and SAVING TEXT

Text may be kept as either sequential or program files. ASCII Sequential
files can be disk assembled by either version of your assembler via
SEQ FILENAME. Program files can be .LINK/.LOOP load chain assembled
(ie. assembled directly from memory) by EBUD only. The C-64 can also take
advantage of FAST LOAD/SAVE cartridges for the 1541.

Page 41

PROGRAM FILES

To save your source as a program file simply press RUN STOP to return to
Basic. then enter SAVE "MY-STUFF".8 (C-64) or DLOAD "MYSTUFF" (C-128)
just the way you would any Basic program. To load this file back in
tomorrow you would you enter LOAD "MY-STUFF".8 (C-64) or
DLOAD "MYSTUFF" (C-128).

TO & FROM BASIC

To return to the editor from Basic use the ED command. If you loaded
something new It will be there; otherwise whatever you were working on will
still be waiting. unless of course you gave the NEW command to Basic in
which case your source will have been cleared.

SEQUENTIAL FILES

To save and load sequential files it is not necessary to leave the editor. To
save a file as a SEQ file begin by pressing (LOGO) P. Then. following the
"PUT:" prompt enter the name you would like to give your source on disk.

To load a SEQ file press (LOGO) G and following the "GET:" prompt type
In the name and press RETURN. The file will be loaded in. beginning at the
position of the cursor. This can be used to join two files.

ASSEMBLING

To assemble editor source. first press RUN STQP to return to Basic. Then
enter the AS command. The source in the editor will be assembled directly
from memory. It is not necessary to save it first (unless you plan to kill
the machine). You may then issue the appropriate SYS command to test the
code and (hopefully) return to your still intact source via the ED command
afterwards. Complete memory based operation is supported. With EBUD and
EDITOR.64 or EDITOR.128 you can also disk assemble. file chain. load and
save symbol tables. create object files. and indeed do all of the things
POWER ASSEMBLER does with the Basic editor.

SOMETHING TO TRY (C-64 only)

The source for the BUDDY-UNASMBLER is on disk in sequential format.
Either version of Buddy will assemble it from disk to memory at 50000. To
create a program file of ML code from this source you will have to use
EBUD. After loading and running EBUD use (LOGO) G to get
UNASM-SOURCE into memory.

Change the .MEM on line 2 to .OBJ UNASM.OBJ then RUN STOP to Basic.
Enter the AS command to assemble UNASM-SOURCE creating UNASM.OBJ
which can now be LOADed •••• 8.1. If you would like a version to load
somewhere else in memory change the .ORG 50000 line.

Now you've got a really powerful and fast memory based unassembler that
will convert code to true POWER ASSEMBLER source.

Page 42

CONVERTING SOURCE TO ASCII

On disk is a program called MAKE-ASCII that will create an ASCII file
completely compatible with the EBUD system from any Basic format source
file such as created by UNASM and used by POWER ASSEMBLER.

LOAD and RUN MAKE-ASCII

Enter the name of the Basic file followed by the name of the ASCII file
you would like to create. It will be done. You can get this file into
EDITOR.64 or EDITOR.128 using the (LOGO) G command to load a sequential
file. You will probably see that this new ASCII file consumes less space on
disk than the original Basic one di&

EDITOR COMMAND SUMMARY

fl
f2
f3
f4
f5
f6
f7
f8
CLR
HOME
(LOGO) S
(LOGO) D
(LOGO) T
(LOGO) F
(LOGO) R
(LOGO) P
(LOGO) G
RUN STOP
ED
AS

ZBUDDY (for Commodore 128 only)

delete rest of line
insert new line
page up
page down
page right
page left
find/replace next occurrence
replace all occurrences
top of text
bottom of text
start set range
delete range
insert range
set string to find
set string to replace
save (put) seq file
get (load) seq file
go to Basic
go to editor
assemble source in editor

The following is intended to assist the more advanced ML programmer in
making use of the C-128's Z/80 micro processor via the very powerful cross
assembler, ZBUDDY. ZBUDDY lets you use standard Z/80 mnemonics (see
"TEST.ZMNE" program on disk) and BUDDY's expression syntax and rich body
of pseudo-ops (see those sections of this manual) to create ML code for the
128' s "other" micro processor. Symbol tables for these assemblers are fully
compatible (ie. symbols can be .SST saved on one and .LST loaded by
another) so that complex programs involving both the Z/80 and the 8500 can
be written.

Page 43

PROGRAMMING THE Z/80 (C-128 only)

The C-128 is a two processor system. Inside are an 8500 and a 2/80. The
2/80 is one of the most advanced 8 bit processors alive. It, unlike the
8500 which is memory based, is a register based micro processor. It has two
sets of general purpose registers. Each of these sets contains an
accumulator, a status register and six, 8 bit, general purpose registers. The
second set can be used for the interrupt flip-flop (IFF) or by the exchange
(EXX) command to remember and restore register contents. Data registers
can also be paired for 16 bit addressing and arithmetic. In addition to these
there are four other 16 bit registers: the PC (program counter), the SP
(stack pointer) and the (IX) and (IY) (index) registers.

8 BIT INTERNAL REGISTERS (C-128 only)

A
B
C
D
E
H
L
F

A'
B'
C'
D'
E'
H'
L'
F'

accumulator
general purpose

flag (status)

16 BIT REGISTER PAIRS (C-128 only)

BC B=hi byte C=low byte
DE D=hi byte E=low byte
HL H=hi byte L=low byte

TRUE 16 BIT REGISTERS (C-128 only)

IX index
IY index
SP stack pointer
PC program counter

COMMANDS (C-128 only)

The 2/80 recognizes several times as many instructions as the 8500; some
therefore require more than one byte of opcode. These commands can be
functionally divided into 13 groups.

1. THE EIGHT BIT LOAD GROUP (C-128 only)

The 2/80 assembler load instruction, LD, might more aptly be named MOVE.
There is no store instruction. Every LD will be followed by two operands
delimited by commas. The first operand represents the destination and the
second the source, so that the instruction LD ($COOO),A means store the
contents of A at $COOO whereas LD A,($COOO) would mean load A from
$COOO. In 2/80 mnemonics, parenthesis define a memory location; otherwise
an immediate value is assumed.

Page 44

2. THE SIXTEEN BIT LOAD GROUP (C-128 only)

This includes all the commands which move two byte values either between
registers or between registers and addresses. Included here are the PUSH
and POP instructions which is handy since addresses are what stacks are
mainly for.

3. THE EXCHANGE GROUP (C-128 only)

Register contents can be swapped with the secondary set or within the
primary set. There's nothing like this on the 8500 although we often wish
there was.

4. THE BLOCK TRANSFER GROUP (C-128 only)

Set a few register pairs and use one of these to move or fill memory a
byte at a time or in a Z/80 controlled loop. The short Z/80 routine which
we will later call from Basic to copy its ROM into 8500 visible RAM uses an
LDIR loop.

5. THE BLOCK SEARCH GROUP (C-128 only)

As above, the Z/80 can automatically control looping by counting down the
value contained in the BC pair and incrementing the address pointed to by
DE. Ranges of memory are compared with the A register until a match is
found or the BC pair decrements to zero.

6. THE 8 BIT ARITHMETIC AND LOGICAL GROUP (C-128 only)

These allow for manipulation of one byte values in pretty much the same
way 6510 programmers are used to. Addition and subtraction are possible
with or without carry.

7. THE 16 BIT ARITHMETIC AND LOGICAL GROUP (C-128 only)

Same as above but with two byte values being manipulated. The logical
AND, OR and XOR are not found in this group.

8. THE CPU CONTROL GROUP (C-128 only)

Processor and interrupt modes and status flags are handled.

9. THE ROTATE AND SHIFT GROUP (C-128 only)

Many different types of shifts accessing both one and two byte values via a
variety of addressing modes are available.

Page 45

10. THE BIT SET RESET AND TEST GROUP (C-128 only)

These commands provide for complete bit addressing. Each takes two
parameters. The first will specify which bit (0-7) is to be set, reset, or
tested; the second will designate the register or memory location to be
manipulated. For example SET 3,OX+0) would set bit 3 in the address
pointed to by the IX register (ie OR it with the number 8).

I!. THE JUMP GROUP (C-128 only)

Conditional and unconditional, jumps (direct) and branches (relative) are
supported. Anyone who has ever had to fake a conditional jump in 6510 via
BNE *+5:JMP FAR or an unconditional branch via SEC:BCS NEAR will
appreciate the versatility of this Z/80 group.

12. THE CALL AND RETURN GROUP (C-128 only)

Subroutines may also be called and returned from conditionally or
unconditionally.

13. INPUT OUTPUT GROUP (C-128 only)

These are specialized load and store instructions. In the C-128, when
accessing I/O memory (DOOO-DFFF), IN and OUT commands should be used
instead of LD.

PROGRAMMING THE Z/80 IN 128 MODE (C-128 only)

The 2/80 brings a convenience and conciseness to ML programming that is
sure to please and impress 6510 assembly language programmers. I hope the
above has whetted your appetite for doing a little exploring. It will inspire
you to know that this micro processor can be used in conjunction with (not
at the same time as) the 8500 in the C-128, even from Basic; switching
between them is not much more difficult than switching between memory
banks once you know how.

SWITCHING PROCESSORS (C-128 only)

Bit 0 at $0505 (54533) controls the micro processor mode. If it is turned
on then the 8500 becomes active; if it is off then the 2/80 takes over.

You can't just poke It off. A little housekeeping is first in order:

Disable 8500 interrupts via SEI because you are going to switch to a memory
configuration in which Kernal ROM is not visible.

To do this, store a $3E (62) at $FFOO (the configuration register). This
leaves I/O RAM intact but switches everything else to RAM O.

Page 46

MANAGING TWO PROGRAM COUNTERS (C-128 only)

You're still not quite ready. The U80 PC register holds $FFED after 128
initialization. There is a NOP ($00) there. The first actual U80 conunand
goes at $FFEE. If you look through the monitor you will see a $CF there.
This is an RST 8 opcode byte which will cause the 2/80 to jump (ReSTart)
to its own ROM routine at 0008. You do not want this. After moving some
8500 code into place at $3000, the 2/80 would return control to the 8500.
The 8500 wakes up exactly where it left off after you switched to the
2/80. If you followed this switch with a NOP (lets not wake It up to fast)
and then a JMP $3000 (like the operating system does) you would go into
the 128's boot CP/M routine. This is pretty useless from a programming
standpoint, so don't bother. Instead, put your own 2/80 code at $FFEE.

THE 2/80 STACK (C-128 only)

Before you do any 2/80 subroutine calls you should set Its stack pointer
register (SP) to point to some area that will not interfere with your code or
Basic.

The last thing the U80 will have to do is to turn the 8500 back on. There
are two ways to do this:

LD A,$Bl
LD ($D505),A

This is inferior. There is a bleed through condition in the 2/80 mode using
this type of store. A $Bl will also be written to underlying RAM. (which
is where 2BUDDY sits, making this feature especially bothersome.)

Here is the proper way:

LD BC,$D505
LD A,$Bl
OUT (C),A

Bleed through not occur using OUT storage and all I/O memory between
$DOOO and $DFFF can be written to. In our Basic coding sample the
background ($D021) and border ($D020) are poked via the 2/80 OUT
instruction.

Ordinarily you would have to bear in mind that the U80 might not
necessarily take off at $FFEE the next time you activated it. It, like the
8500, wakes up where it went to sleep. The best procedure for switching
back and forth is to try to always put the micro processors to sleep in the
same spots. These switches could be followed with jump conunands. Before
invoking them you could set the jump address for the other micro processor
to anywhere you like. 2/80 ROM puts a RET ($C9) conunand after the 8500
switch allowing the 2/80 to CALL the 8500 from anywhere and return when
the 8500 switches back. You can aiso put an RTS ($60) after the U80
switch so that the 8500 can JSR the 2/80.

Page 47

TWO RAM ROUTINES FOR SWITCHING (C-128 only)

Now it just so happens that there are two routines high in RAM 0 through
which the two micro processors can invoke each other. The 8500 invokes
the Z/80 at $FFDO. When the Z/80 returns control, the 8500 picks up at
$FFDB. Leave the NOP ($EA). You can take over at $FFDC (65500).

The Z/80 invokes the 8500 at $FFEO. When the 8500 returns control, the
Z/80 picks up again at $FFEE--and so on and so on.

SWITCHER (C-128 only)

On your disk is a small POWER ASSEMBLER source program called
"SWITCHER-SOURCE" which handles the Z/80 stack, the user call, and
controls the "sleepy time" program counters for the two micro processors
while making use of the RAM routines at $FFEO and $FFDO. SWITCHER
thus allows you to easily execute hybrid programs and, as our
"INVOKE-Z80.BAS" example shows, even call the Z/80 from Basic.

SWITCHER code sits at 3000, high in the 128's tape buffer. The address of
the Z/80 code to be executed should be in the 8500's X (=low byte) and A
(=high byte) registers. These can be passed directly from ML or even Basic
via the 128's new improved SYS command, which is exactly what
INVOKE-Z80.BAS does. The program pokes some Z/80 code in at $6000, then
after having SWITCHER get the Z/80 to execute it, continues in Basic. The
Z/80 code copies its ROM into RAM at $8000. Notice how easy it is to
code this move (4 instructions, 11 bytes). The Z/80 then pokes the screen
colours just to show off.

The SWITCHER code isn't long at all, and should pave the way for some
serious exploration of the Z/80 language and environment in the 128 by true
Commodore O/S hackers. You can use POWER ASSEMBLER to relocate the
SWITCHER code and ZBUD to write much more interesting dual processing
applications than provided in our little Basic demo.

POWER UNASSEMBLER

On the program disk is an ASCII source file called UNASM-SOURCE. If you
are using the Basic format compatible POWER ASSEMBLER then running the
following short program will assemble the necessary code to memory.

For the COMMODORE 64:

10 SYS 999
20 .SEQ "UNASM-SOURCE"

If you are working with the EBUD version of the assembler then only a
.SEQ "UNASM-SOURCE" line need be ASsembled, or you may GET this file
into the editor, make modifications to it and assemble it directly from
memory. (See the EDITOR.64 section on "SOMETHING TO TRY" of this
manual).

Page 48

For the COMMODORE 128:

10 SYS 4000
20 .BURST
30 .SEQ "UNASM-SOURCE"

;if you have a 1571

If you would like a BLOAD' able object file, insert the following line before
the .SEQ line:

25 .ORG 60000:.0BJ "UN-CODE"; any name will do.

Do not try to change the load destination to other than 60000 from outside
the main source. To do this (1) DLOAD and RUN "EBUD", (2) press
(LOGO) G to GET:UNASM-SOURCE, (3) change line 1 's .ORG 60000 to your
own origin address (then an .OBJ "NAME" line if you want the code saved),
(4) press RUN STOP to enter Basic, (5) enter the AS command to assemble
everything.

In any case you have a powerful memory based unassembler at your disposal;
one that will convert raw code to LOAD 'able, LIST'able, SAVE'able source
that you can attack with LABLEGUN (C-128 only), modify and/or re-assemble
using POWER ASSEMBLER, or convert using MAKE-ASCII to source that can
be worked on in EBUD's powerful ASCII editor.

HOW TO USE UNASM

After assembling UNASM-SOURCE to memory it must be enabled via
SYS 50000 for C-64 or BANK l:SYS 60000 for C-128, (unless you've changed
the origin). All this does is set some pointers and print a header. To use
UNASM enter the UN command from Basic. Your "UN" will be extended to
prompt:

UNASSEMBLE FROM $

Enter a start address in hexadecimal. (You can use POWER ASSEMBLER
display to convert decimal to hex if need be). You will then be prompted

TO $

Another hex value must be entered representing the address of the last byte
of code to be un-assembled.

HIDDEN RAM $ (C-64 only)

Next you will be asked if ROM is to be banked out. If you are
un-assembling hidden RAM such as where BUDDY resides then you would press
"Y" for this. If you are un-assembling ROM you must press "N", otherwise it
doesn't really matter.

Page 49

SELECT BANK (C-128 only)

Next you will be asked to select the bank of memory which the code you
want to un-assemble is in. As in the C-128 monitor you will use O-F to
designate banks zero through fifteen.

FORMAT

Finally you will be asked if you want standard format. You probably do not.
so press "N". Standard format cannot be re-assembled; it is for looking at.
The line number represents the decimal address of each instruction.
Following this will be the same value in hex. Last will be the instruction.
Except for the line numbers this resembles the format produced by ML
monitors. Again. standard format is for examination purposes. not
re-assembling.

Non-standard format produces actual POWER ASSEMBLER source that. with a
little work. you can make as good as the original. Line numbers will still
represent the address of the un-assembled code. Labels will be generated
and used if and only if possible.

Depending on the amount of code being un-assembled you will have to wait
from no time at all to about 10 seconds for the job to be done. When
Basic is again "ready" enter LIST ... there is your source.

RANGE LIMITS

UNASM can take on almost 4K of code at a crack. It is sensitive to the
Top-Of-Basic pointer ($1212) so that utilities such as your assemblers and
editor which use this pointer to protect themselves will never be over-written
by UNASM generated source. If you enter a range too large to fit in the
Basic buffer no harm will come of it. UNASM will do as much as it can
before stopping.

PROBLEMS

Those of you who try to LOAD ...• 8.1 and un-assemble EDITOR.64
($9700-$9FFD) will discover that the code. when assembled back to memory
does not work properly. This program like many others has a certain amount
of ASCII and other data embedded in it. Where UNASM encounters a
non-opcode it will generate a .BYTE instruction to handle it; however.
sometimes some rather awful (ie. meaningless) instruction sequences will also
be generated by this data. It is up to you to create the appropriate .ASC •
. BYTE or .WORD lines to give meaning to this garbled source.

UNASM may also produce source lines like this:

49152 ZCOOO ASL $0020

Absolute addressing has been used on a zero page address. Whether this was
intended or the result of embedded data the assembler will assume you mean
ASL $20 and code zero page addressing. The $00 byte is lost and the code
is shortened.

Page 50

SOLUTIONS

You can correct assembling un-intended zero page addressing by changing such
un-assembled source lines to 49152 ZCOOO ASL !$20, forcing absolute. The
source should then assemble properly to its intended destination although it
may not look pretty or be truly useful yet.

You can use POWER ASSEMBLER's .OFF and .MEM pseudo-ops to assemble
the code to memory somewhere safe and then perhaps write a short Basic
program to compare it byte for byte with the original. You will be able to
spot, then list, lines which didn't re-assemble properly.

UNASM can also not possibly know when the low and high byte values of
internal addresses are being used in order to set up RTS jumps, intercept
vectors, or self-modify. You will have to study the source to see where this
is being done and create the correct symbolic expressions for these
statements before it will be truly re-workable and re-Iocatable.

Having a symbol table for the un-assembled code (as you have for the
assemblers) can make analyzing it and even reconstructing meaningful source
much less work.

For Commodore 128, LABELGUN commands can be used to attach meaningful
names to the hex oriented symbols generated by UNASM. MAKE-ASCll can
be used to convert the Basic format, un-assemble source to stuff you can
work on in the ASCll editor (you'll lose the line number references).

Insufficient disk space makes it impossible to provide complete source listings
for your assemblers as part of the system package. However, you should
find UNASM-SOURCE and the SYM files an interesting and useful compromise.

STANDARD INSTRUCTION SET & ADDRESSING MODES

ADC #byte byte byte,x word word,x word,y (byte,x) (byte),y
add memory to accumulator with carry.

AND #byte byte byte,x word word,x word,y (byte,x) (byte),y
logical AND memory with accumulator.

ASL implied byte byte,x word word,x
shift left one bit.

BCC word
branch on carry clear.

BCS word
branch on carry set.

BEQ word
branch on zero.

BIT byte word
test bits.

Page 51

BMI word
branch on negative (128-255).

BNE word
branch on not zero.

BPL word
branch on positive (0-127).

BRK implied
break execution.

BVC word
branch on overflow clear (bit 6).

BVS word
branch on overflow set.

CLC implied
clear carry flag.

CLD implied
clear decimal mode.

CLI implied
clear for Interrupts.

CLV implied
clear overflow flag.

CMP I/byte byte byte,x word word,x word,y (byte,x) (byte),y
compare with accumulator.

CPX //byte byte word
compare with x Index.

CPY I/byte byte word
compare with y index.

DEC byte byte,x word word,x
decrement memory by one.

DEX implied
decrement x Index by one.

DEY implied
decrement y index by one.

EOR I/byte byte byte,x word word,x word,y (byte,x) (byte),y
exclusive OR with accumulator.

INC byte byte,x word word,x
increment memory by one.

INX implied
increment x index by one.

Page 52

INY implied
increment y Index by one.

JMP word (word)
jump to new location

JSR word
jump to new location, save return address.

LOA #byte byte byte,x word word,x word,y (byte,x) (byte),y
load accumulator.

LOX #byte byte byte,y word word,y
load x index.

LOY #byte byte byte,x word word,x
load y Index.

LSR implied byte byte,x word word,x
shift right one bit.

NOP implied
no operation.

ORA #byte byte byte,x word word,x word,y (byte,x) (byte),y
logical OR with accumulator

PHA Implied
push accumulator on stack.

PHP implied
push processor status (flags) on stack.

PLA Implied
pull accumulator from stack.

PLP implied
pull processor status (flags) from stack.

ROL implied byte byte,x word word,x
rotate left one bit with carry.

ROR implied byte byte,x word word,x
rotate right one bit with carry.

RTI implied
return from Interrupt.

RTS Implied
return from subroutine.

SHe #byte byte byte,x word word,x word,y (byte,x) (byte),y
subtract memory from accumulator with borrow.

Page 53

SEC implied
set carry flag.

SED implied
set decimal mode.

SEI implied
disable interrupts.

STA byte byte,x word word,x word,y (byte,x) (byte),y
store the accumulator in memory.

STX byte byte,y word
store x index register in memory.

STY byte byte,y word
store y index register in memory.

TAX implied
transfer accumulator to x index register.

TAY implied
transfer accumulator to y index register.

TSX implied
transfer stack pointer to x index register.

TXA implied
transfer x index register to accumulator.

TXS implied
transfer x index register to stack pointer.

TYA implied
transfer y index register to accumulator.

NON STANDARD 6510 (.PSU) INSTRUCTIONS & ADDRESSING MODES

ASO #byte· byte byte,x word word,x word,y (byte,x) (byte),y
ASL then ORA result with accumulator.

RLA #byte byte byte,x word word,x word,y (byte,x) (byte),y
ROL then AND result with accumulator.

LSE #byte byte byte,x word word,x word,y (byte,x) (byte),y
LSR then EOR result with accumulator.

RRA #byte byte byte,x word word,x word,y (byte,x) (byte),y
ROR then ADC result to accumulator.

AXS byte byte,x byte,y (byte,x)
store result of a AND x.

LAX byte byte,x word word,y (byte,x) (byte),y
LOA and LOX with same memory.

Page 54

DCM byte byte,x word word,x word,y (byte,x) (byte),y
DEC memory then CMP.

INS byte byte,x word word,x word,y (byte,x) (byte),y
INC memory then SBC.

ALR ilbyte
AND with value then LSR result.

ARR ilbyte
AND with value then ROR result.

XAA ilbyte
AND with x then store in a.

OAL #byte
ORA with iI$EE then AND with data then TAX.

SAX ilbyte
SBC data from a AND x then TAX

SKB byte
skip byte.

SKW word
skip word.

Page 55

RECOMMENDED READING LIST

REFERENCE

MACHINE LANGUAGE FOR THE COMMODORE 64
~~D OTHER COMMODORE COMPUTERS

ASSEMBLY LANGUAGE FOR THE COMMODORE 64

INNER SPACE ANTHOLOGY 2ND EDITION

ADVANCED MACHINE LANGUAGE

MACHINE LANGUAGE FOR BEGINNERS

SECOND BOOK OF MACHINE LANGUAGE

Page 57

AUTHOR PUBLISHER

Butterfield Brady

Sanders Microcomscribe

Karl Hildon Transactor

Data-Becker Abacus

Mansfield Compute!

Mansfield Compute!

BUDDY 128 INDEX

Addressing Modes
Addressing Modes
Assignments, Equal
Assignments, Set
Assignments, to Program Counter
Backward Referencing
Comments on Style
Comments, Meaningful Symbols
Compatibility
Corporate Policy
Display
Equal Assignments
Error Messages
Expressions
Features
Forward or Backward Referencing
Forward Referencing
Getting Started
Important Routines & Locations
Input
Instruction Set
Macro Ops
Meaningful Symbols
Memory Usage
Non-Standard Addressing Mode
Non-Standard Instruction Set
Operands
Operators
Output
Programs Provided
Pseudo Ops
Pseudo Ops, Definitions
Pseudo Ops, Quick Reference
Reading List
Recommended Reading List
Set Assignments
Standard Addressing Modes
Standard Instruction Set
Style, Comments
Symbol Management
Symbols
Temporary Labels
Temporary Backward Referencing
Temporary Forward Referencing
Temporary Labels
Temporary Symbol Management
Unassembler
Warm-up Exercise
White Space
Writing Your Own Commands

Page 58

12
51

9
10
10
37
15
15

4
56

5
9

13
11

6
37
37

7
35

5
51
33
15

7
54
54
10
10

5
3

16
18
16
57
57
10
51
51
15
36

9
36
36
37
36
38
48

7
15
34

IN-D-PWA

