o aidel

Losding instructions for dish and coseette - see inside back cover,

faBLt OF éu arst OO O L

Special keyboard (unclions e s N
Getting started with G-Pascal it)

How to use G-Pascal ... Vereeserrensensean eearareasiearsasansians creeasasaens reresrerermaeass 9
Using the Editor i, erresvanasenes O 10
Editor commands .oivciicieionsesesinsisisesesstincesiassanases 1
Beginner's Guide to Pascal ...
Programs and blocks ...
Procedures and functions ..o
Statements .iiierienicenienann crereenraens sneissiasarsensnasseevens rersvaneraneene ceescensaen
EXpressions ...o.censiiinenniinneneen S PN ceversrane breesssseeraseranases
Notes on the Compiler .oivennent rrree
MEM and MEMC ... vereerenaiserase
LOAD and SAVE ... foearvenararens y
GETKEY and ABS .iivviniiininennens Gresvesarinsasessressrarssansestononsnes
Sample program (Prime numbers) ...ocoveiiinens cresstsasannnsine 32
Compiling your program eeerresrernensessanes 33
@ Compiler Uirectives ..., veensenas . . 33
Compiler error messagescocoveenes 35
Run-time error messages 39
File Handling iiiiimiiiinieeciintieraniesinianeniosiesse s . 40
The GRAPHICS command . 43
Sprite processing averview evesvesursseesasasnes SR S 46
The SPRITE command ; 47
General sprite commands reersenecnenanne creereiessasanes creeeesasesas vereeeresaeren .. 48
DEFINESPRITE .iiiiiiirriniciniieneenrannseenanasssas rseresssscenieninianenastenantass ceeee 48
POSITIONSYRITE and MOV[SPRITE cermeisrsaraessantnsnnesarenserntase . 49
ANIMATESPRITE and SPRITESTATUS ..ccccocanneanee terressrensnransreanrsnarranene 50
SPRITECOLLIDE .iveiiivriirirenniierniainensanesmescins ceeesriestnteieeeresannsnans cerreeaner 50
GROUNDCOLLIDE ciiviiiiiiieninencnens evassisresstoretesierntsrnssrnataseraser PR 51
STOPSPRITE - and STARTSPRITE .cccciieniiirimmmesiisiiincsanieniieniiosien 52
SPRITEX and SPRITEY ..coiiiiiiimiiiienncenisinsensiennses reereserernrrens reerens ceree 52
SPRITEFREEZE and FREEZESTATUS creesraeserernnns Creseensieesan crerereie 53
Speeding up Sprites .o..eiieiireiiinniiia crersssrssresensanenens ivecsnsesnsasnesssrnssasoas 54
Miscellancous graphics commands ..oocoviiiiniininnn. eeesaraeenseranrratsensttoartsanes 55
WAIT coiteeeieeeeereensesneasesstesessaesssnsassnsn reerrteeeaesesestasaeaeeeanesaesune 55
PLOT and CLEAR oiiriiiiniiiiccreneneend chessrsesisaestanronasennsanescenia TR 1
SCROLL, SCROLLX and SCROLLY ceerusnedeees
CURSOR, SETCLOCK and CLOCK eserearettasessisesersanassusaarssrsstres
g PADDLE and JOYSTICKccviirrennennn. ceneens rersuseresssesase snmveseraasrten
S-Pascat Sound Effects .ocerececenaans cereresaneans crersnestnsensenaes veveserarons
The SQUND commandccccvvmiciicnnaionecanens
The VOICE commandoveenneenns
Sound effects functions
RANDOM and ENVELOPE :
Independent modules ...t v
How text is stored by G-Pascal ceveererttenissenansan
ldiosyncrasies ‘of tokenizationiievieniss .
Converting from other Pascalsoieaens
Debugping .oocoeiiivanivianioiioneen
Trace and Debug mode
Memory Map ...oveeaieenee.
Machine Janguage subroutines sesonss creersrsiensanssnnsenenes sesareosnanas crecesaenrs 78
Meanings of P-codes seresnens oronsnnsriane esersesesensvetsesssnnesarsens vemsosese 79

N

quﬂn{lcf-l{(0 ((.

G-raseal and this manual are copyrignt - All rghts are reserved, They may not,
in whole or part, be copied, photocopied, reproduced. transtated or reduced (o any
clectronic medium or machine readable form without prior consent, in writing, {rom
Gambit Games, Imbedded within the object ¢ode may be one or mare encrypted
serial numbers. individuals or organisations tound i possession. of unauthorised
copies will be liable ta vigorous legal action for breach of copyright,

NOTICE

Gambit Games reserves the right to make improvements in the product described
in this manual at any time and without notice.

G-Pascal is designed, written, manufactured and supported in Australia by Gam-
mon & Gabbett Computer Services Proprictary Limited trading as Gambit Games,

Gammon & Gobbett Computer Services Proprietary Limited is a company incorpo-
rated in the State of Victoria,

This Manual was typeset by Hughes Phototvpe, Cremorne, NSW, and printed
by Noosa Graphica, Noosaville, Qld. Al rights are reserved.

DISCLAIMER

G-Pascal is sold or licensed “as is”. The entire risk as to its quality and perfor-
mance is with the buyer. Should G-Pascal prove defective following its purchase
“the buyer (and not Gambit Games, its distributor, or its retailer) assumes the entire

cost of any necessary correction and any incidental or consequential damages, Gam-

bit Games believe G-Pascal and this Manual are accurate and reliable and much care
has been taken in their preparation, however Gambit Gaiires make no warranties,
either express or implied, with respect to this manual or with respect to the G-Pascal
compiler, its quality, performance, merchantability, or fitness for any particular pur-
pose. .

REPLACEMENT POLICY .

Gambit Games warrants to the original purchaser only the medium on
which G-Pascal 15 recorded to be free from delects in materials or ‘workmanship
under normal use and service for a period of minety (%0) days from the date of pur-
chase. If during this period a defect on the medium should oceur, the medium may
Be returned to Gambit Games ur 1o an authorised Gambit Games dealer, and Gambit
Games will replace the medium without charge to you. Your sole and exclusive re-
medy in the event of a defect is expressly limited to replacement of the medium
as provided above.

To provide proof that you are the original purchaser please complete and mail the enclosed
Quwner Warranty Card to Gambit Games.

If the failure of the medium, in the judgement of Gambit Games, resulted from
accident, abuse or misapplication of the medium, then Gambit Games shall have
no responsibility to replace the medium under the terms of this warranty,

POSTAL ADDRESS

Please address correspondence to:
Gambit Games,

P.OBox 124,

tvanhoe,
Victoria
Australia,

3079.

(

i A

(

Porad 3R AL F7 0L SRl » ¥ \
mlopdod. OO (0
.N? ‘\JEJ' o f . N !(‘
Congratulations k\ purchasing G-Pascal! We are sure that you will first L ery
wsefud amed vasy to se. G-Paseal on the Commaodore 64 contains very advanced fea-
tirres making it an excellent development tool for this computer, namely:)
2 Hiph speed compiter (0,000 lines per minute) which implements a comprehensive
subset of standard Pascal. . X R
o Puilt-in powertul Teat Editor which includes global hm? and Replace (t\}w«\.len.iy. |
o tenstons provtde extensioe suppwrt for the Commadore 647s graphics, siusi .ufuf soum
effects, teme-of-dav clock, interoal tuner, cursor control qd f'()lnxlr mn!mll fhere ar‘v
in fact 76 separate tunctions and actions built-in as extensions tor the € nmmm!m}'
64, Sprite handhng s particulary well catered tor, with m»mm.mds to .m!nm.\(y
cally moyve sprites around the screen with animation desired, and to automatt-
-ally stop sprtes if they collide,) .
° (Cm:,\plu{!v }xn‘.ulv-stylvy;;.mws can be written without using a single PLEK or
POKE. '
o Lrror messages are in plain English with an arrow to the point of error.
e As the entire system is memory-resident, editing, compiling and testing is very
fast and casy. ‘ . ored
® Pascal programs may readily be stored on disk or casselte - programs.are store c!
in a ‘compressed” formal, thereby speeding up loading and saving times, dnd
allowing a larger program to fit into memory. . .
® Support tor machine-code (assemblery subroutines if dclstrcd. A A
® Debupying aids, such as Trace and Debug modes, which can be invoked al any
time trom the kevboard. ' . N
e Compiler supports INTEGER and CHAR data types, and single- dimension ar-
rays. integers range from -B388008 to + 8384607 o B .
& Compiler supports the standard Pascal cunstructs:‘((‘)‘f\lﬁl, VAR, PROCEDURE,
FUNCTION, WIHILE, DO, REPEAT, FOR, 1T and CASE,
® Arithinctic expressions may contain the relational operators as well as *, = /,
*, MOD, AND, OR, XOR, SHL, SHR and ABS. o
e Compiler supports independent modules (Procedures that are compiled indepen-
dently and located elsewhere in memory).
e Compiler produces relocatable P-codes - the object code produced by the com-
piler may be run at any memory address without change.

Run-time package o ,

If you are planming to develop commercial programs or games in G- Pascal. pl(f‘a-SLT
enquire about vur interpreter-only Run-time pn(ku)p". Hlv Run-time system umsa.m::
of the interpreter as a stand-alone program which is 6K lun;:.‘ Using {?1(- Run-l;n‘u
system simply consists ot Joading the P-codes produced by this compiler and then
running the interpreter,

3

(

: . / (|
is auad
- - [} . . \
ih{ a utal has been designed with a nuinber of purposes ir(el
B rointraduce the Paseal language. :
* To tully describe G-Paseal’ iliti
v des Pascal’s capabilities and be a :
i S ¢ a ‘reflerence '
expericnced programmer, ‘ e manual for the
® To describe the G-Paseal stpport system, such as the
error messages and so on, so that the G-
and use.
1 wond the scone i
" (thfalll‘s Fv‘(\l(;rw(1 the seope of this Manual to provide a really comprehensive
. e .1.5; J] anguage. There are many good Looks on the Pascal
shops and libranes, ¢ ' ‘ P
md'c\ ;\“1\«.;“ ‘asbr;nu;,l'uml.lumn;; between them thousands of pores of information
h N es abot Pascal, pood progen actices Wl serioes
' Y Rramming practices, games and serioes applic
S abo hal . . seriot ica-
tions. You are strongly secommended o ind o Pascal book which covers !.h‘c} ‘

of programs that you ' a . :
5 s that are interested in (pames qrvatics S
and so on). (Bames, mathematics, business, adventure

i Editor, File system,
ascal system is casy to understand

guide

Pas) e . . R
Tth’ ri:s(;al ;md”(hxf. .\;Lmtml are somewhat oriented towards arcade- style games
cason for thas is that the Comm ith i ites a ‘ esizer
. : modore 64 with its sprites and 3-voic i
is o eason for he ‘ sprites and 3-voice synthesizer
q;);k g):;l!: ﬂtc.(md low u;s! !;nthud of vasily writing and expenimenting w‘)lh arcade
Style games. Consequently the discussions | i abor)
: tentl scusstons and examples (particularly sprite
s&fm the most meantingtul in this context Pt 1y about sprites)
Tfowever thete | . Pa
prame Lg\::cr] there ;s no reason why G-Pascal cannot be used for ‘text” oriented pro-
« SUCH as adventure games or more serious applications, for example: small-

sScate 3 55 8(arg p {t y ? -
> v toe tics or
S(!l > bugl“(' s0ftw e, ma h(‘nld lUb lblhl CXPEI ”I(?“‘S, a”d (dUCahO“al

Suggestions

If you have jus - §
tionsyma_v b\éeh;s_ptffll:xrchased G-Pascal and don’t know where to start, these sugges-
L {(;:SLOI\:):-({IF-PZ’?CM into your Commodore 64 so that you can try out the examples
o yoursel : and confirm that G-P'ascal does what this Manual says it will,
.lu‘rn'tq Getting Started With G-Pascal’ (over the page) and foillow the step-by-
o ;Vnip'mblmch(_ms to enter, cpmpilc and run your first program. Py
Ed:tlo‘i z:));rmf:r:ti prugr?n? is stiill in memory start experimernting! Try different
it oy comn : (lt? - t:y')» saving the program to disk or casselle and re-loading
o ot ll. . § the program - tr)ﬁ changing the program.
5 a.sciq ls'dcsngn.vd‘tu be ‘fait-safe’. Built-in checks make it very hard to do
;ﬂ;ml {11'1{; »}/r(mg. h).r example, it will not allow program to be run before
1as been compiled. The very worst that can happen is that a program wi
out lfst'l! or G-Pascal (possibly making it necessary to turn off "h -’1 : ch
re-load G-Pascaly however this is extremely rare, T poweran
L H.’);uu are a beginner o Pascal, or want 1o know in detail about what G-Pascal
. wil do, read the section ‘Beganner's Guide to Pascal, ‘
zﬁlln!x' t‘hmugh the Manual, becoming familiar with what (- Pascal can do Try
ot t:)(.l;;()«::xi\';‘)‘lu = most of them are quite small and only take a couple of min-
® Lxperiment i.n more detail with the aspects of G-Pascal (and the Commodore 64)
that you are interested in (e-g. graphics, sound effects, games, etc.)

4

fanguage in book-

type

ot o S o Sy
s 3

——

hoW '(l J Léq\ /gnlD I%uN (S-I’ASQ_AL ((
1. Load and run G-Pascal as directed by the instructions that came with your

disk, cassette or cartridye,
2. Your G-ascal is now running! You will see:

G-Pascal compilar Version 3.0 Ser 4321

Written by Nick Gammon and Sue Gobbett {
Copyright 1982 Gambit Games)
P.0. Box 124 vanhog 3079 Vic Australla

<Exdit, <C>ompile, <D>ebug, <F>iles,
<R>un, ¢S>yntax, <T>race, <O>uit 7

Now see the section “Getting started with G-Pascal” which is a step-by-step gffide
to entering your lirst program,

SPECIAL KEYBOARD FUNCTIONS
The following keys have special meaning to G-Pascal.
Space bar .

Pressing “space’ will freeze a display on the screen, Press any key (except RUN/
STOP) and the display will continue. RUN/STOP will abort the display.
RUN/STOP

This will abort a display, or if a program is running, will abort the program with
a message showing which P-code was currently being executed. '
RUN/STOP/RESTGRE

Holding down the RUN/STOP key and then pressing RESTORE will do a ‘'warm
boot” aborting whatever G-Pascal is doing, clearing the screen, and returning to the
Main Menu. Any program in memory is not lost, however. Normally just pressing
RUN/STOP (without RESTORE) will be sufficient to stop a program running, how-
ever press RESTORE as well if nothing seems to be happening.
COMMODORE/T

I a program is running will cause a Trace to start. (See "Debugging your program’
for more details). To enter COMMODOREIT hold down the key with the Commodare logo
thattan left hand corner of the keyboard) and then press the ‘T key. ,
COMMODORE/D

It a program is running will cause Debug mode to start. (See *Debugging your
program’ tor more details). To enter COMMODOREID hold down the key with the Com-
todore loge (hotto Ieft hand corner of the keyboard) and then press the ‘I key.
COMMODORE/N

It a program is running will stop a Trace or Debug. (N = Normal). If the program
is not Tracing or Debugging pressing COMMODORE/N will have no cffect. To enter
COMMODQREIN hold down the key wnth the Commodore logo (bottont left hand corner
of the keyboard) and then press the "N key.
Arrow keys '

The arrow keys (and INST/DEL key) function the same as in Basic - useful when
in the Editor or when typing in a file name to Load or Save.

5

e

T
k.

po il cial el ke fo]

q %rmé sTA(;\rr;é vVIngn G-Pgw‘C,{((((

W':'l':;"sictm‘n pm\-id(;s a s’(c;i-by-stvp introduction to using the G- Pascal system
ilt key in, compile and run a simple proy, P ‘ A ‘ :
i C : prany, Please work through this exa
ple using your Commodore 64 - it will giv ihan i 3 phases
) ol give you tamiliarity with the varie <
of the system (editing, compiling and running). ’ anous phases

PR

To distinguish between what you enter a

‘ Ve at v or and what G-Pascal responds, ail '
to be entered by you is in boid /talics. All Editor commands are (tva:(ina‘L:d‘lJ i !
sing the RETURN key. ey pres

After loading G-Pascal you will see the Main Menu - enter ‘E’ to invoke the Editor

eos

(E)dit, (C)ompite, (D)ebug, (F)iles,
(R)un, (S)yntax, (T)race, (Q)uit ? €

The Editor prompts with a colon (). T i i } i
R0 progLam cumently it e o (:). Type L (for List) to confirm that there is @)

L

Now enter your program by placing the Editor in input mode. To do this, type

. I(for Input) ...

A

The Editor will now prom i ‘' - indicati

. ' pt you with a ‘Y’ - indicating that you are about to

en:xjt;}{;\,hn;: ‘rl:umber 1 of y‘our program. Type in the program as sho):m'n, pressing RE-
L at the end of each line. If you make a typing mistake while entering a line

you can use the INST/DEL or cursor movement keys (arrow keys) to correct it ’

1

1 (* program to display the squares
2 of numbers from 1 to 10)
3 constlimit = 10;

4 var k : Integer;

5 begin :

glork:z 1 to limit do @
writeln ("square of "'k,"” I3 ",k * |

8 end. ek

9

Just prcss‘ RETURN on its own here and i i
“TURN e and the Editor will]
display a.colon again, indicating it is ready for another cumma(r'\;:i‘te Input mode, and

6

+ (] D S

(NmV()’011(»s'.mn(¥Ypi n‘y,di(| ‘o s(;d no~(~ce 2 li(b"wg'o(‘%m':r

program which looj tenivaal to the progran .oove (

L

If you notice a mistake at this stage the casicst way to correct it is to use the

4 . N . M . . oty
Editor's Madily command. For example, if you misspelt ‘bepin’ on line 5 as ‘began’,
then you would type in ‘M5 to maodify tine 5. The Editor will echo the current
contents of line §, and then enter Input mode to allow you to type one of more

lines to replace it. The whole operation would look like this ...

5 began
5 begin
6 >y

line you may wish to just move the cursor over the
line in error (using the arrow keys), correct the line and then press RETURN. ’
Just press REFTURN here to leave Input mode again. You can now ?mcmpt. to
compile it by entering C (for Compile). Compiling the program converts it to object
code (P-codes) ready for Running,.
It you have made an error in typing in your program y
sage, and be returned to the Editor, with the colon (;) displayed

pens, Modify the offending line and try again. . _
1f you have not made any crrers the whole process will look like this ...

Rather than retyping the

ou will get an error mes-
again. If this hap-

:C
G-Pascal compller Version 3.0 Ser# 4321
Written by Nick Gammon and Sue Gobbett

P.O. Box 124 lvanhoe 3079 Vic Australia

| Copyright 1983 Gambit Games
|
\

P-codes ended at 412E
Symbol table ended at Coz28

) (C)ompile finished: no Errors

(E)dit, (C)ompile, (D)obug, (F)iles,
(R)un, (S)yntax, {(T)race, (Q)uit ?

At this stage the Main Menu will be displayed again ~ now enter R (for Run)

and you will see the results being displayed on the screen ...

7

PR

SRS

(

_({k.m, (C)S;.pile, (ogwug, (FSR,S, ((((((

{R)un, (S)yntax, (T)race, (QUIt ? A .
Running

squaroof. 1is 1

squareof 2is 4

squareof Jis 9

squareof 4is 16

squaroof Sis 25

squareof 6is 36

squaroof 7Tis 49 N
squareof 8is 64

squareof 9is 81

square of 10 is 100

run finished ~ press a key ...

G-Pascal now displays its ‘end of run’ message, as above. This is to give you @) ,

a chance to read the results. When you press a key (such as RETURN), the screen
will clear and you will see the Main Menu again ...

(E)dit, (C)ompile, (D)ebug, (F)iles,
(R)un, (S)yntax, (T)race, (Q)uit ?

You can now enter the Editor again and try something else! You may want to
experiment with minor changes to this demonstration program to get used to the
Editor and the Compiler. This would be a good time to read the part of this Manual
pertaining to the Editor and experiment with the other Editor commands, such as
Find and Replace. When you are confident about the Editor try some of the other
examples in the book, such as those demonstrating the various graphics and sound
effects capabilities of G-Pascal. If you want to delete the program currently in mem-

ory so that you can ‘start from scratch’, just enter: ‘D 1-9999" as in the following
illustration ...

{E)dit, (Clompile, (D)ebug, (F)les,
(R)un, (S)yntax, (T)race, (Q)uit 7E

‘D 1-9999

Do you want to delete 8 lines ? Y/N Y @ “
8 deleted |

:L

.

Fora s;Jmmary of Editor commands, just enter ‘H’ (Help).

L ouabtiinhadt

ud.. Té e paCAl (0
After loading and running G-Pascal or after a compile or run, you wi*\ woe the
Main Menu®: .
CExdit, <Compile, <Drebug, <Files,
<R>un, <S»yntax, <T>race, <Qouit ?

1t is called a menu because you have various choices to make, depending on what
ou want, ‘ . ‘) -
y To choose one, press the letter corresponding o vour choice (the letter in br.?ICI
kets). For example press C for Compile. Do not press the RETURN k.vyh.;s well.
1€ you make an incorrect choice the Commodore 64 will re-display the Main Menu.

Py
The choices are :

Edit _

Enters the Editor to allow you to type in or change a Pascal program. thg:j..t‘hcr
Editor is active it will display a colon () to let you know it is awaiting an Edito
command. See ‘Using the Editor’ for more details.

Compile . :

('m‘x)\pﬂcs a program (that is, converls it to P-codes) that you have loaded mt'
edited. If the compile has na errors you may then type R (for Run) |f‘ynu'(\—:va':
to run your program. A program must be compiled betore it can be run. See "Co
piling your program’ tor more details.

Syntax _ . -

Yl'his does a ‘syntax check’ of your program, letting vou know if it has an{y errors.
It does not generate P-codes however so you must do a compile as well before run
ning the program. See "Compiling your program’ for more details.

Run ‘ ‘
This will run your program. It must have been successfully comp?lml'ﬁr]st or
§ 7 . >) . .
the message ‘No valid compile done before” will be displayed. G-Pascal will display:
Running
and then commence running your program.
Debug and Trace o - _

These are a varation of the ‘Run’ command which, in addition to rupn:ng‘ yo:xr

program, display debugging information as your program runs. You wxll} no n(’:‘
y 1] H - i 4N . ».
mally choose these options as the information they display clutters up the scree

H * ap s e M {d 7.
@ somewhat and slows down execution of the program considerably. See Debugging

your programy’ for more details.
Files : srams, turn on or off
Enters the ‘Files Menu® to allow you to load or save programs, tu o e’
your printer, and use the Commodore 64 DOS to delete files, ete. See “File handling
for more details.
Quit by asking:

1.eaves G-Pascal, but first checks that you wanted to quit by asking:

Quit 72 Y/IN

If you do not type ‘Y’ the quit has no effect. Do not Quit unless you have finished
with G-Pascal for now.

9

(

{
\

Rty L AR L] [Py

ssths theepo ¢ (¢ O O

The Editor dingiay ' ‘
2 you k:‘:’:v(h',';"ln/s a colon .(:). when it is ready for a command, so if you see
your are in the Fditor, To leave the Editor enter: Q (RIiTURN) \r:-.L*l

you .will return to the ; e
the Files Men, » the Main Menu, or QF (RETURN) and you will go straght to

Line numbersy

The Lditor " ient i)

(o the line "m"'!".'::' ::;”:.‘,b.?r l(lm?r'\tvd. This means that all Editor commands refer

automatically by the l-d;;(v line in vour program. The line numbers are altocated

A A or, ‘smrhu}.', at | and going up by | each line. The line
i dynamic’, that s, if you insert a line between what is currently

line 6 a1 .
W hne 71 .
: wn the new line becomes line 7 ;
line 7 becomen e 8 ole beconmes line 7 and the line that used to be
[.

Commands
Al Editor ¢
. : ommands consist of one Y
A S one letter followed by none, one or possibly two
L 1020 '

would tist lines 10
o il h.v'lluw'-nl %U. lnl some commands {Find and Replace), the line number
a linc-number 1y :' (\w a S;:m;l;d enclosed within delimiters, If you are specifying
anpe, there should be eithe spaces ; Y
c«’;'pmnml anmd e Tine numbers be cither o spaces, of one spact between the
YOU aie sty . '
any mm-nmm-.':.‘"'}'.;m 'tw? line numbers (as in the above example) you can use
Find and Rephae ll' !;n;t(,-r. bct.wecn the line numbers {except *." which is used b
with. For exanpie “'"xd' lrr[m”sm.ngs). Therefore use whalever you feel comfortablz
e w following are ivalent: '
L1590 g are equivalent:
L1530
L 15,30

The commands are :
<Gromptle
I olote E o Number Range

< Line Number Range . string . @

I nsort e Number

x:wqe.\ t e Nomber Range

WM -odhity Ting Number F

NS R er Rlange

Hoplace Line Numb
3 er Ran
LSryotas i ge .old . new.

(’”\l‘ ﬂl'\‘\'l' \v:&‘l\\ sum !y p

g \\\.\Hl‘ summa 5 i ‘ .

lL o] < ap.(‘alﬁ lfy()u ‘VP(’ !lL-I‘l hE i di }
w e !\"\‘H\\‘\ e (‘\})!a!ncd in dc{,’l“ on U\(.‘ f()“UWi.\},’ pdgcs. " ' .

10

6,

)

IR o

SN r PSRRI ottt

AR,

* S

« # TA ':'O(M'/Y-us‘(‘ C o (<

(((

el

DELETE
Deletes one or more lines. Any lines following those deleted are renut
To delcte one line: ,

13 tine-number

c.g

D5

would delete line 5. .

To delete a range of lines: ‘
1) first-line, lust-line

e.g.
D 10,20
would delete lines 10 to 20.
if you attempt to delete 5 ar more lines the Editor will ask you (for example):
Do you want t0 deleto 200 tinos 7 Y/N -—
This is in case you meant to delete 20 lines but accidentally tried to delete 200
Jines. If you want the delete to go ahead press 'Y’ otherwise press any other key.

You do not need to press (RETURN) as well.

INSERT"

Inserts new lines into your program. To insert, enter:

1 line-number
where ‘line-number’ is the line that you want to insert after. To stop inserting

just type (RETURN) when the cursor i« over a blank line (o1 a line containing only
the line number). Usually this means just press RETURN before typing in anything.
To insert a blank line cnter SHIFT/SPACE and then press RETURN.

For example: ’

110

inserts after line 10 (starting at line 11).
The Editor reminds you what line you are currently inserting by displaying its

line number at the start of the line. To put a line at the very start of the program
{line 1) enter: - .
1
To put a line at the end of the program enter:
19999

LIST

Lists your program.

_ To list the whole program: L

To list one line: L. line-number
To list a range of lines:

L first-line,lnst-line €.
L 10
will list line number 10.

L 40, 60
will list lines 40 to 60, -

You can temporarily “froeze’ your list by pressing the space bar. You can sto
the listing altogether by pressing the RUN/STOP key.

11

P PSR g

!g with«(x dne 1(\ .d‘.ers.(| (((((

\chere s o variation of the List command calied the 'N\(- number List’ (N for
short), I works the same as List except that hine numbers are not displayed on
the Teft. fts intended purpose is tor listing the file when the hine sumbers would
be a muisance - for example it vou use the editor tor non-Pascat uses such as produe-
ing a letter or @ name and address list. The 'N' command does not appear on the
command summary, .

o.g.

N 100-500

would list lines 100 to 500 without line numbers,

MODIFY -
Allows you to change one or more lines in your program.
To change one line:
M line-number

To change a range of lines: ‘)
M first-line, last-tine
Modify works by:
a) listing the hine or lines requested.
b) deleting the lines requested.
) entering Insert mode so that you can replace them.

Like the Delete command, Modify will warn you if you are about to change more
than 4 lines. ’

The intention is that for making minor changes to small numbers of lines you
use the ‘cursor control” keys to move the cursor over the erroneous lines, making
‘corrections where necessary, Once a line is corrected just press RETURN to copy
the correcled line back into the program. The cursor does not have to be at the
end of the line = anywhere on the line will do.

COPYING AND MOVING LINES
The Insert command can be used to copy or move text from one part of the pro-

gram to another (in groups of up to 20 lines). The method of doing this is:
ay List the lines to be copicd/moved.
b) Enter ‘Insert” mode at the point where the lines are to be copied
or moved to.
¢) Move the cursor to the start of the lines listed (in {a) above) using the
upwards cursor control key.
d) Press RETURN to copy that line into the new spot. If more than one
line is 1o be copicd keep pressing RETURN untit afl the desired lines are
copicd. Then leave Insert mode by positioning the cursor over a blank line
and pressing RETURN (an casy way to do this is to press SHIFT/CLEAR/
HOME and then RETURN).
¢} Delete them from the old place in the program if desired. (Warning -
they may have different tine numbers now if you inserted before them.)

To move or copy larger blocks of code (hundreds of lines) you can use the ‘ap-
pend” command in the file menu - just save to disk or cassette a temporary file
containing the code to be moved and then append it back into the right spot.

12

(

i ating a string of text W 0
Find command is & powerful method of quickly :m .\m‘\{;r: g -
e m"nm By ‘string’ we jrst mean a sequence ot characters.

i} - 10 |y YT in y() 1r Progre .
F A BLAAY \n\‘lll‘ t¢ ﬁ”d lh! "'.'(."‘ U(eV } L (l'd\“l.‘ A } b‘ m
Oor e

F.procoduro. . o i
As the editor inds cach line conhmmgwllhc‘
it di-epl.)ys that line with its line number. 0
ymber found. - e
mThr Find command can also b‘« used on a rang
iyt ine o in the usual way -
ecilying a line rangein \ .
P F[irsl-linv, fast-line . string . options

word ‘procedure’ (in this ommplc)‘
n it has finished it displays the tota

of lines {or a single linc) by

“& ¢ 100-200.begin. '
The string delimiters mus X

recll‘y follow the line nun.\.bcr range

RUN/STOP will abort the Find.

+sent, and di-
¢+ gymbol, they must both b’c Prcscn , ;
b o .(ifS);)rcscnt) ory the letter ‘F' (if not). [frodsing

" Options on the Find .

ameters - each
ay optionally be followed by up to three parame¢

The second e ongle | ppear in any order or not at all. The op-

represented by a single letter. They may a
tions are:

rers |

Translate - this will temporarily translate any lo\\ier-c?si?igét‘st‘l:ng\.

T - Translate er case before comparing them to .th spec o

e Pff_)?;m""m UP}: i u;cd then the Find will differentiate bv!wdi.ltn b

N u“: [.Opmm. ‘:n’\(.Ic Since the compiler considers upper an o:v cr

?n(i frod , for ‘:(inn}i’dc; ;;tring literals) then it may be’v{xﬁc to l:jb(hen e

\(l<‘¥}tlcdl Lpz(ccfhm‘k'ing for how often words occur. If “T" is use _
Zlﬁ::’;s:ec(ﬂri‘ed in the Find must itself be entered in lower- case.

e.g.
F.lred.T

. . o strin
Q - Quiet - this will not display lines wh}ch cnng;xrl\ tho.:is;;?hc;:u;;l Zszf‘ugl
onl_y the count at the end of the Find will be ?‘;[t)haeye”(;rd e NG oe-

P int J imes (for example v
iust counting the number of times (.) the \
:ﬁﬁ fc(\)xrrs!uv:'il'r(\(()mt actt,xally listing all the lines which contain it.

C.Y,.
' F.begin.q

() - (lk’bdl - ““5 W‘" sear h 'd(h l p < ’y C
4
ch ead ineIn U“' rogram l(" e occurren €
()‘ UI(? b p('(lh(d b h“lg, not luﬁ t ul(.' hlh‘. “l(U“ly dl”(’l(nce “HS “““ !“ake
3 th i thal l(A ‘”\" contains more thall one ()CCU“C“CQ 0(ﬂ\c Shl“g
o0 16} ,”ld b1 d I ntain

then the count at the end of the Find will be different.

e.g.
F.begin.glq

(

st e s

] ‘\gm (((((((((

The Replace command is a powerful methad of quickiv replacing a string of text
within your program with another one, By “string” we just mean a sequence of char-

aclers.

For example - to replace the first occurrence of the word ‘enemies’ on cach line

with ‘klingons just say:
R.enemies. klingons.,

As the editor tinds each line containing the word ‘enemies’ (in this example) it

replaces the first occurrence on that line with the word “Klingons” and then displays
the line with its line number. When it has fimshed it displays the total number
replaced.

The Replace command can also be used on a range of lines (or a single line) by
spucitying a line range in the usvual way -

R first-line, last-line. old string . new string . options
e.g.

R 100-200.fred .nurk.

The string delimiters must be the " symbol, all three must be present, and directly

follow the line number range (if present) or the letter ‘R’ (if not). Pressing RUN/
STOP will abort the Replace,

Options on the Replace

The third delimiter may optionally be followed by up to three parameters - cach

represented by a single letter. They may appear in any order or not at ail. The op-
tions are: "

T - Translate - this will temporarily translate any lower-case letters in
the program to upper case before comparing them to the target string. If
the ‘T option is not used then the Replace will differentiate between ‘FRED’
and ‘fred’, for example. See the discussion under the ‘Find’ command for
more details.

Q - Quict ~ this will not display lines which have been replaced - only
the count at the end of the Replace will be displayed. This is useful if you
know there will be a lot replaced - and you are sure that you are replacing
the right things! ’

G ~ Global - this will replace every occurrence of the string on each nomi-
nated line - not just the first - use with discretion. Warning: if you use
the ‘Global” option indiscriminately and make a program line longer than
88 characters (the maximum the system can handle) then the Editor will
not function correctly, For space reasons there 15 no check built in to pre-

vent this happening, so make sure that in the process of replacing that
program lines are kept to a reasonable length.

COMPILE

This starts a compile of your program. It is the same as entering ‘C’ from the
‘Main Menu'. See ‘Compiling your program’ for more details.

SYNTAX

This does a “syntax check’ of your program (to let you know if it has errors).

Tis the same as entening, ‘S’ from the ‘Main Menu’. See ‘Compiling your program’
for more details.

QuUIT

Typing ‘Q’ leaves the Editor {quits) returning you to the ‘Main Menu’. Typing

‘QF takes you directly to the ‘Files” menu,

- 14

[coaba 8]

6

(

- ©

e ——

I I ‘ {:[E N -
lhl“ ’\“kh' ‘V\ not "l!t'"\(\l'(‘(“ ¢ compre NN l 18 \‘ “lh‘”l' \ Ve ’(
» 3 Ce] OWLeYer Bt
.] ‘ \‘ vy } ,‘ aneive : et ‘ ‘ ‘ j
. .
ll\‘!l)ti\!l! \U\l““ S AR R ‘A\\i‘.' conet !‘t‘\. . ' ry U\ﬂ 1he o ‘(n"l“ ($h])Ul""l to K\U“"L
.) (1'ase 1's ‘ . N 1 . k‘ e ” ‘ -
Nt - stru ture l"\d < Hic h .
'{H iliar \\'l‘h ull’ l \“},Udhl‘ stru \Vh A\ n.K' st !“'Hll‘!lt'\ 10
\‘c‘ o8 OF NCeW . i « (%) 1 L
. . { ‘ 1 5 d U v ‘ ’.‘ ((. . “ﬂ n » ! “
Sraces . Yy IU“"‘» may e y U'-(.‘ w1t \\ll‘ (:l" ":‘ v lll.\ \Y 1" 1w Imidie ¢
" i . \’ t] e ‘ . it \ N vad ‘ ‘ » 4 R ‘ ber R
of wornds U AR AL s) to 3R 1.X0 the “1” ‘l.\l 1 MmoOf ‘ s ! AR "'l‘ll or lower Cast
‘. : ‘. \ i TN ik l\ ¢t Hﬂ “! convers y
('hdl wiers m W l‘l st d it |\"\ AEAP MY \1}’)\’ s w) wier nverts ever n\ll\’ {o
lP"l T Casy il\ Crivd y (l Xk"\} S r“lh cOns amts, L.’,,. red "
BT ECASEe te u v s st Y t T { . l
Comnu nts may “\‘ “l‘ll mnterspersed "un y wir Pr mny - “l(y mius t b{' on-
>) i ‘ b ‘ \Vl“ ! ¢ I (‘glt) ‘)
(l()‘n(“d W I‘“\.H\ u\(“(dlld) N\'IN‘.‘\ l Comme ts n\c\y ﬂ‘ ‘ Car < { ([N ‘
b ' LR 4151) NS CAT lHV\Vh(‘I’ s (oxee 1 Wﬂh“l
St l . -
”\l‘ n“d(-‘(' ot o \V(\ld or ,’syﬂ\t g) . \‘u\
PLeTVEL L arg h“‘*‘\‘ ”hl‘ hd\’(' Q 9" |“ mesnng, to h om ‘llL‘l c"\d mus
l t A spec ¢ B ¢ ! ¢ ‘ v b
ysery § wor l'ﬁ h) .] \ s 80 ca
. 1 ‘l’r|'(“ (‘()nh‘\‘. ”\'. } are .'“'h() wn it ﬂ\l‘w s¢ h('lll mn l‘l‘ P\‘I (d\‘t' mn ()ld("
h(‘ st \‘ i the ¢ A VL vt y ' [l \ l\ A
Y “‘\'h‘“ 1 \ m, utht N OTAS, 4 < 3 erey e
to di)vl [‘I “\ T fron l“ roWOr vis H.')w "Wy HH' nay b !.\ H i loweT case
in yot " L) ‘ 1 [1, ¢ ('l'(" et ,.l ' i ..' ‘(. ." b
. e Pl”,vr NS If yor wishe n ¢.|(l SN Wl reservet WOrds .!l:s {OKEeNISE y
i y i It (y[¢ A"’(yl OWLTr Casy, (},t b y
nlL‘ (.(‘lll‘"‘l‘l tl\l‘ W\“ I‘\N\ h) l) 9 dlS l 1 ‘d mn l WU 8¢, TOS Nd‘ ’8S ()‘ h()w “\L‘
are l‘“'(‘ll(l.

i 5 ¢ P an € (.
" is (‘”\l‘ i A% ¥C ‘ Ose l ti Of Y (’
)\” WOore han rese (‘d W(lld‘i we chosen Y ¢ rOgrammer ()Ulgt"

e 4 ith a fetter, an
o tere are significant), must start wit .

- \ , teneth (all characters ard signi . m S (The underscore
I:“"Y (,;miv b‘n‘::lz (\:fn‘t'.m.l(—s numbers or the underscore (!hdrﬂ(i;(irt' ‘(Onkﬁ like a ‘left-
after that co : 2 e the Commaodore - "
. s al as _ however on e of the keyboard.) A
is shown in this Manua the top left-hand side o Y
X , i« entered by the key on the 10§ ‘Declaring’ a word means
arrow’, and is ente red by rod before they are used. Dedlaning 2 ¥ Sing

NP rds must be dectared be) \ 1 do this by using
ust‘r-d(l;n‘(d_ ,‘;:)»i‘lvr to what use you are Puu‘m;; \h'(“r,\(]"j‘.cg;:u;m
L o CONST, VAR, PROCEDURE or FUNCTIOR Ceciar
the wor ’

N DS red in italics. For example,
GENSR‘C ‘3'((")1%)(the Manual ‘generic’ words are entered in italic

n this sec 2 _ ' .

D statement ist

. definition of an 1F statemen - en ,
the defin ¥ expression THEN slatement ELSE stalement ither reserved words of user-

In this case ﬂw words expression and statenent nrlv rlulr o ,u;d e e pros-

e we indicate that they are o be reph s

ined w ; otead they indicate the dwith @ b cor
B ‘:(;T‘:“;; rl\'thm '1pprujniah~, referring, 1o other parts of this M
sion or statement a8 < . erring 10 ¢ |
“f)‘ netruction of expresstons and statements. i syntactical item may be
" (l‘f - elipsis (..)) is used it indivates that the pre c(!((yt’bt?upd e aly Y

e i Codey . Exactly what part may e repee 5 s T
o ally indefinitely). bxacty ©0 : ’ . the definition of a com

;('Pl Ml‘ld (x;‘\lt::x}‘l or the examples following,. For example, the de
rom the _

und statementis: '
pe BEGIN statement; statement .. T,‘Nl)"y sppear tween the LEGIN and the

1 »statements may apple > . \
. case Z0TQ Or more sta pea \ e olons.

Fl\ll?)ul‘;:n(orc than one statement appears they are s¢ parah.d by

15

J T

Cidomab (O C OO0

A G-Pascal program consists of \
] g ststs of a ‘block’ followed by i i
below. For examiple, a si ol ollowed by a period. A block is explai
. ample, a simple program is: ck is explained
o eam ple program is:
WRITE ("Hello")
END.

BLOCK

A block consists of the following:
CONST constant-declarations

VAR variable-declarations

PROCEDURE)

FUNCTION ; procedure and function declarations

BEGIN statements END

i Aralions ¢ 4]) o
€ < ; ¢ , NC b t } } int
lh(_‘ GO(1 yrations' are \" opti)Il]’ h YWCVET I' llSl‘d h(' must appear in ll(.’ db()vc

. S”ILL‘ a \nllld st wniisan l“ statemen * ll()ul n h o)]I minimum
("dl’l) aement
NN) L State ‘('.t. lg)l(\lc m

CONST

Wy o0 s), H - " d H h H
e constant dl("(‘ ati S > .
S lg
S8 B o ace
] msia rations are used to assign a n ime t 1 C :l‘st()l\t, that 1S, a Value

& ¢ .
”l\l ‘Vl” not ll”‘ t du“"' ”l' 1
}) }., ¢ execution ()f HIL’ pl()blﬂ“l lhc '0““ Ut the constant

CONST identifier = constant; ...
For example:
CONSTcr = 13;

clearscreen ='147;

numberofplayers = 2;

frue = 1; '

false = 0;

on = true;

oft = false;

AS in th(:lb()\. « P =i
€ Cxam lL‘ a constant d(.’(lala‘!()n can u an ld(lltl“(_'r W!Il(h ’li)s
, s¢
‘
a I('(ldy ‘)(‘('n (1(’('.H(‘(i as a constant (C.g. on = tru(’,)

Valldbl(‘ d(‘(ld Al < <& aric . d -
rations are Ub(‘d to name ”‘(’ var)bl > dﬂ(a Vari]bll‘ﬁ are (.‘l”lol l

(¢ It

SNl (‘, A !VP , « (P d y ¢ Arrd y. N ;, (1231t S N‘

I ! i R or { R g and may option)” l) > an oarry lll“l "!‘ van lbk"; o

”\(_ S¢ ¢ ‘y‘ ¢ h b > y 2 t
¢ suparate as. ' is 18
“f A !HI-' " > m y : p X Ld b commas. Ihl& 15 lh(' ,_"l'“l'l‘)l ‘()llllﬂt UI V"“abl(‘

VA'R list-of-identifiers : INTEGER;
;xs.‘-nf—vdvnfrﬁvrs : CHAR; '
tsl-of-wdentifiers : ARRAY | array-si
_ 5 -size | OF INTEGER;
The Tis I(z);fj:jf-uh'r;h/u-rﬁ : ARRAY | arm;-ﬂzc } OF Cl illi.!({'m{’
> hist-of-identifiers si - L
comne 1 tfiers consists of one or more variable names, separated by

16

foerane . Sk ﬁ VRS m o Sl

(

—— —_—

e arr.\g YR c(\, ‘vd(4w m(m ((:rcnc(u\bclg hat a itemy(’

Arrays start at subscrip ero, so that when you say ARRAY {10 you are v .c,'(
to an array of 11 items, numbered 0 to 10,
Some examples:
VAR a, b.c, d. e 1 INTEGER;
oncmysirength,
anemysize.
enermydexterity : ARRAY [10] OF INTEGER;
inputtine : ARRAY {80] OF CHAR;
ch : CHAR,
amount1, amount2,
amount3, amount4
- INTEGER,

INTEGER variables are three bytes fong cach (in other words, three bytes of mem-
ory are reserved by the compiler for the contents of each variable or array clement
in the case of INTEGER arrays). This means that INTEGER variables can contain
a number in the range LHIBROO8 Lo+ BIBBOOTZ. (In hevadecimal the range is: $0 to
SEEFFEF). Integer variables can also hold up to a three-byte ‘string’ of characters,
for example: “hi” or L.

CHAR variables are one byte lony each. This means that CHAR variables can
contain a number in the range 0 to 255 (hexadecimal SO to $EF). They can also con-
tain a single character string, tor example: "W or 5. .

The Compiler does not carry out “type-checking” so that INTEGER and CHAR
variables can generally be intermixed in expressions and elsewhere without problem.
However, normally INTEGER variables are used to hold numbers, and CHAR vari-
ables are used to hold characters, parti\‘ul.lrly arrays of characters. Hf the resalt of
an expression is stored in g CHAR variable and the result exceeds 235 (the maximum
that it can hold) then the result is truncated — only the low-order byte is stored.
Mathematically this means that the result stored is the number modulus 256.

G-Pascal does not support other data types, nor the TYPE declaration. However
see the section ‘Converting from other Pascals’ for hints on how to simulate other
data types in G-Pascal.

PROCEDURE and FUNCTION '

Procedures and Functions are ‘subroutines’ which may be called later on in the
program ta achieve a speditic purpase. The format of Procedure and Function decla-
rations is identical. The difterence. between them is that functions relurn a value,
and thus form part of expressions (vxplainvd later), whereas pmcvdurcs do not re-
turn a value, and do not form part of expressions. The format of proccdure and
tunction declarations is:

PROCEDURE procedure-nante (argument-list), block ;

FUNCTION function-nane (arguntent-list); biock ;
17

L] AT] FRR N Sl St ‘r_ "

N T G e o e A G G e O G (O R G G G G
{ toe ‘(argtuaent-listy s optional, hewever if usea it l(

sts of one or more argu- BEGIN 4 DO <
e \ . lasinumber A
‘ ments, separated by commas, mstde parentheses. These are known as “formal RIHIN FOR numbor 1= ﬂt‘SmUTb‘m T&?Q ?as" doubla (number »
' ments’, In the body of the procedure or tunction the tormal argiments are wsed WRITELN (number, " imos 213 -,

as if they had occurred in a VAR declaration (of tvpe INTEGER), although in fact
no declaration 1s needed tor tormal arguments. Duning the exeeution ot the program,
when the procedure or tunction is invoked arguments are supplied (the actual argu-
ments) — copies of these are then used by the procedure or tunction. For example,
a tunction to double o number would have one arpument (the number which s
z to be doubled) - the value returned by the function would be the double of the
; formal argunment. (See example below), v

i You will note that the detinitton of o procedure or function declaration includes
; 2 'bDlock’, whereas procedure and tunction declarations are themselves an (optional)
: part ot a block. This is known as a recursive dehnition. In other words, a block
may contain a procedure declaration which itselt contains a block, which in turn
may contain another procedure declaration and so on. This means that procedures

END: (* printdoubles °)
BEGIN (* main program *)

clearscreen; | \:
printdoublos (20,30)

END. (* of main program)

dures and functions, i3 a complete

s well as illustrating, proce A Pl
The above example, as well as illustrating p dures 2 Note that lht‘l‘unumn

. woin and try f . " [a
. Mhich you may wani to key it e »' This is an exampie O
;Z;ug{;l‘r'\ i‘:‘:i(vclzlrvd within the procedure F‘”"Ml(mbh :h 11 }i";luﬁr;itulv Notice the
‘double s ¢ . . » he nested 1t Y- .,
. - s - . . " 10Ns may . -
and tunctions may themselves contain CONST, VAR, PROCEDURE and FUNC- : mested” function, Procedures .m;l 'fum‘tmm _m: invoked (catled). Procedures are in
) . ’ N N g S d i . ~ -
TION dedlarations. different way that pruu‘durt «\l’:(Uﬂ; The main program ahove in fact !T\L'!‘dy ‘um
— s a statement. ¢ M . . -iny them
6') C voked by naming, thomv as dcxt;()t\% Functions however are invoked by nmmr‘;;,of e -
: . ¢ ' invo e ' . Y $ a par .
sists of W}'U pn')(;;;‘rucrs:ion’ -(in this case the function ‘double’ forms a pe
as part of an ¢ 5

WRITELN statement.
The function ‘dotble’ '

ments) in a caleulation. When ‘do ’

(i.e. double (number)). A copy ©

e e L e e e 2 8

I the procedure or function contains its own VAR declarations then these are
known as ‘local’ vanables as they can only be reterred to inside the

procedure or
function in which they

are declared. Outside the procedure or tunclion they have
no meaning and may not be reterred to (this is reterred to as the scope’ of that
dedlaration). It is good programmung practice to use local variables for data that is
not needed outside the procedure or tunction, such as loop counters, flags and so :
on. This avoids possible wintentional conflict with other variables used elsewhere,) onsiders il to be its argument % xS then multi-
The values ot local variables are lost when the procedure or function in which passvd to ‘double” which then u)‘nsu m,. of the function, which is the way that the
they are declared is exited. That is, when a procedure or function is invoked the plied by two and assypned to the “‘“‘ f the program that invoked it. (i.e. double
contents of all of its local variables are not defined - they are not retained from function returns its result to the part ¢ prog
any previous invocation. They may only be used while the procedure or function c=x*2). '
is active, and are discarded when the end of the procedure or function is reached

¢ BALES B « [S ¢ ‘ St gu-
'\“\'U IHU‘;‘T"‘UG h(‘W a fun(‘“(\n can use its pamm!'l('ls (L
; Vo TR ceg } N 1w .

i J Thhis d the pd am
lll)‘(18 (‘d]h d itis ‘h : 1 T ter l\llll\‘N‘I
”\L‘ Vﬂ‘l]t‘ Cl)nldint‘d in nunﬂ‘(‘r 15 n\ﬂdc ﬂnd

Recursive Procedures and Func‘hqns e
Procedures and functions can also invo

3 > > i Y 0
i times be useful, For example, here is a way
xamples of Procedures and Functions

. . .
themselves recursively which can s.om(
{ calculating factorials by recursion:

Here are some examples of procedure and furiction declarations: VAR number ; INTEGER;
‘ PROCEDURE clearscreen; . '
@ CONST home = 147; 6 () EUNCTION factorial { x);
| BEGIN o BEGIN
| WRITE (CHR(home)) : ' IF x = 1 THEN
f END; (* of clearscreen *) factorial : = X
5 ELSE * factorial (x — 1)
l PROCEDURE printdoubles (firstnumber, lastnumber); faclorial : = %) 12¢°

VAR number : INTEGER; - END; (* factorial ®)

i FUNCTION doubie (x): 7 BEGIN (* main program)
E BEG?N ION doubie {(x) FOR number : = 1 T0 10"00 ial mber})
V double '= x * 2 i WRITELN (number, 1 = “, tactorial (number;
g END; (* of double *) ‘ ‘ END.
} 18 19

[T

%& Eolain FRHEE CEETPE TR Richa Gl S Gkt

T O xam ~(\ Loove (RITIOIN (e Vh'h‘(o 'r.m\(
¥ ¥ [N

Londely’
, sl The function ‘Gactorial” keeps calling itsell (rech,
further (1 factorial is 1), There are other ways of calculating
pic illustrates recursion quite well,
(A factorial of an integer s the product of all the integers from 1 to dtself, o,
4 factorinl, which is represented mathematically as 4, is 4 * 3+ 2,
5 lactorial is 120 and so on))

{

s AV Wah o try for
) until it can gu no
factorials but this exam-

g
which is 24.

STATEMENTS

The parts of the program (or block) that “‘do something’ are the statements, The
beginning of the statements part of a block is signalled by the word BEGIN and
the end by the word END. Like the defimition of o block, the definition of a state-
ment s recursive - that is, some statemoents may contain other statements, The

simplest example of this is the ‘compound statement’. A compound statement looks
like this:

BEGIN
statement; statement; statement ...
END
In other words, wherever a statement is allowed, the
followed by any number of statements separated by semi- colons, followed by the
word END. For example, the definition of an IF statement is as follows:
1F expression THEN statement ELSE statement
The following examples are valid IF statements:
IF x = 3 THEN
b:="5
ELSE
b:=10;

word BEGIN may be placed,

IF word = “abc” THEN
BEGIN
a:=1;
b:=2
END
ELSE
BEGIN
a:=5;
b:=10
END;

Null statements :

A valid statement is the ‘null’ statement (in other words, nothing). 5o the follow-

ing is also a valid (although rather meaningless) IF statement;
IFa = 21 THEN ELSE;

The absence of any symbols between the THEN and the ELSE and also after the
ELSE indicates the null statement. In other words, nothing will happen. Occasion-
ally this is uscful ~ for example, dunng debugging you may temporarily convert
a statement to comments (by endlosing it in (* and *}) - this will have no il eifect,

20

§

)

)

)

(

O

. : desd
We no.. sumn(...\ Hu(..riuus(asc.ﬂ(oM n(.m.\ls(tha ((
tion of their purpose,
Assignment statement
variable 1= expression B ' e
The assignment statement evalitates the eapression (expressions
Jater) and places the result in the named variable, e.p.
g
A:=B"25

explained

dure invocation .
Proce procedure-name (('.\';rrf'ssixv;l, ("x‘;;rcs:m'v(r‘lu..i;“).vo‘“‘ ¢ hatis, transfer control
AN '? rlwl'(:::"'\:v::‘l"(‘1'\‘:"(;A‘lylr((':\l(fl\‘tl:(df-hm'd within that procedure’s dt‘(‘l_ar“;
tf’ " l"“‘l'(‘dl”.“ lur(: dgcl wation contained a list of tormal arguments then ‘E;}“'k-:!lt‘f
et lhl‘ll“m:!::('\; to tllmt procedure are now supplied in the m’rm .(:l .1]“.|;Cl(;
Vﬂl\l(‘S_ “h‘ ?‘ qlf:.\.rm-d by commuas, all in parentheses. e.g. l‘L/\Y/‘\l\«()llE (‘ uircd'
SL‘H{(R\I!;:;;\})(‘ll’l I;() arguments are required then the parentheses are not rey .

e.g NEXTGAME;

IF . ‘
3 i Ns ? tatement)
s expression THEN statentent ELSE s . s exe-
The ox‘;[»r::sii:m is evaluated. If it is true (not zero) then ll'w hr;t sTt}.:Lcr'leigh oxe
cuted, if it is false (zero) then the second statement is executed. : :

ment’ clause is optional. (Example previously).

WHILE
WHILE expression DO statement 1 _ This
The expression is{ evaluated. ¥ it is true (non-zero) the statement is executed

process is repeat™d until the expression becomes false (zero).

e}
e.g.
B x:=0;
WHILE x < 10 DO
BEGIN
X=X+ 1 .
WRITELN (x," squared is “,x * x)
END
REPEAT .

s stateme L expression)
:!’E/\T?‘nhmwnl ; statement ... UNTIL ' ssion
The staRtvam.q between REPEAT and UANIH, are cx::cuttd. Then the expressi
+is evaluated. 1f it i false (zero) this process is repeated. e.g.

REPEAT x:= x + 1,y =y + SUNTILx = 50

CASE .

CASE expression OF
label-list] : slatement?; ...
{abel-1ist 399 : stalement999

ELSE statement

END

- 21

(0 (

;gw exprossion is evatated, “inis is calted the “case s

{

A, Wi then compared

i turn o the lists
sts of expressions (labels) p
! S s s) precedimg cact e : i
ane of the . ' atalerye X } £ each statemer o I i :
one of ¢ em (hl‘" the statement tollowing the colon 15 excauted and i Y (_/!\én'.\ldu-s
e te l”mm-!lv.'ci It no label matches the selector then the st m.mtn{ ‘I“I 1 \ l N
d5E IS execute i e 18 e T g
cuted. As in the IF statement the ELSE clause s up(inn'] The |,{:"| ll!“;
s ¥ L abet lis

c«fvnsm!s ol one or more evpressions, separated b
of standard Paccal whieh ondy allows a list of constants, o,y
CASE actionnumber OF mEE o
1 processactiont: o
g. 3. 4 : processactions234;
5, 6 : processactions56
ELSE processerroraction
END

B st

v ocommas, This, f an extension

The E is g :
e END is part of the CASE statement and should not be cCnfused with the

nolrlr:;ll :lffjt'il.\' l:.\'[: pairs normally found elsewhere in Pascal

215 an example of using expressions ina CASE s ment:
RASE ot ASE statement: ~
(x > 0) AND (x < 10) : smalix;
(x >= 10) AND (x < 100) : mediumx;

x>= 100 : largex
ngSDE toosmalix
WRITE and WRITELN

WRITE (output-list)
WRITELN (output-list)
WRITELN

WRITE . 'RITE ion i i
wrilcsle'(~:?:fx t\,{\l.]‘"LU\’J function identically except that WRITELN automaticall
wit W[{l'[tt[f\’-‘(th return a(t the end of the output- list. In other words, at the cm)j,
K ; e cursor (or printer if printing) ¢ *nees 'w line, ’
ws_lr}'\()ut any arguments just writes a carrfu;c rc!})u)rnl.)mmmab > mew fine. WRITELN
of 0:‘(_0 (())xrnf:i)(r hstf is evaluated and writlen to the screen. The output list consists
0! ¢ of: expressions, striing ¢ ants peci ions \
U(I;R, et by e ing constants, or the special functions HEX and
String constants are writlen ‘as is’ ,
'h(,‘”()l' ir:olr;.:‘f xbx:trsart Iv;/ntlm as is’, e.g. WRITE ("hello”) would display the word
hellor o mnww(“t:\t. qu):luu w}/antléhte quote symbol to appear in the string itself
N iwo : > quoles should be used. For example is) NA!
ls"sm-, you would enter: WRITELN (MY NAML ;:WTEIL'JL'-‘}'(')“(;“PI“Y' MY FAME
o j(nd::ﬁressm& Is written on its own it is vvalua(v(‘i d;\d th.c result dis
5 a dec number, e WRITE (5 6) would d 3y : A
T enal numbe c(m(’ml' . would display “30° on the screen.
o w 5 codes {such as clear screen, shif
:::x’;:(!‘\;:;)and 50 (fn} the number should be wrtten as: I(‘illl{ ‘(l;))uw;x((rr.:ase' e
]’[{‘[N'hr»(i']nt. (.;,.'}\ RHI:I:N (CHR(147)) would dear the screen. (This is the x is an
! TIRS(147) in Hasic). . 29 The same ast
o write a number in hexadecimal the
0 wrile a _ adecimi > number should be wri ¢ HE
where x is an expression. ¢.g. WRITE (HEX(10)) would display ‘()()()r&;f\r" st HEX 00

The functi o / ‘
o functions HLX and CHR are only meaningful withm a WRITE or WRITELN state-

played

WRITELN (65,” in hex is “,hex{65),” and in ascii is “,chr(65));
22

5

ad (O C OO0 o

READ (input-list)

The input list consists of a list of one or more variables, separated by commas.
Each item in the bstas treated svp.\r.\lvlv, as if they had .\ppmn-d in separate READ
statements. There is no built-in method of aceepting a hst of numbers from one
line of input, atthough you could write a procedure to do this by aveepling @ string
and decoding it as desired. The ettedts ot the various types of input-list variables
are as {ollows: ‘

a) Variable of type CHAR - a single character is accepted from the
keyboard and placed in the named variable, The system does not wait for
the RETURN key to be prvssvd. The character is not echoed on the sggeen.

b) Array of type CHAR with no subscript supplied - a line of input is
accepted from the keyboard and placed in the named array, starting at sub-
script zero. The line is echoed on the screen as it s typed in, and the normal
cursor control keys may be used to edit the hine prior to the RETURN key
being pressed. I the line entered is smaller than the array size then a RE-
TURN symbol will appear in the array (i.e. the value 13) after the last char-
acter entered. Warning = the Commodore 64’ full-screen editor wiil cause text
on the sereen to the right of the cursor to be constdered part of the input, even
if it wasn’t actually typed i at that time. This meons that a ‘default’ answer
can be displaved and the cursor positioned to the start of it. If the user
just presses RETURN then the text to the right of the cursor will be returned
automatically.

¢) Variable of type INTEGER - a line of input is accepted from the
keyboard. The line is echoed on the screen as it is typed in, and the normal
cursor control keys may be used to edit the line prior to the RETURN key .
being pressed. After RETURN is pressed an attempt is made to interpret
it as a decimal number and place the result in the named variable. The
first character must be a number or minus sign, the tollowing characters
must be numbers, until the RETURN is pressed. If these conditions are
not met the built-in function INVALID is set true, otherwise (if the number
is OK) INVALID is false. Warning - the Commodore 64°s full-screen aditor will
cause text on the sereen to the right of the curser to be considered part of the input,
cven if it wasn't actually typed e al that time. This means that a “default’ an-
swer can be displayed and the cursor posttioned to the start of it. If the
user just presses RETURN then the text to the nght of the cursor will be
returned automatically.

d) Variable of type INTEGER foltowed by a $ symbol. A line of input
is accepted from the keyboard, The line is echoed on the screen as it is
typed m, and the normal cursor control keys may be used to edit the line
prior to the RETURN key being pressed. After RETTURN is pressed an at-
tempt 15 made to interpret it as a hexadecimal number and place the resuit
in the named variable, The numeric string input must be from 1 to 6
hexadecimal digits for the attempt to succeed. 1 the number is not recog-
nized as a hexadecimal number then the buth-in function INVALID is set
true, otherwise (if the number is OK) then INVALID is false,

23

(2 e ﬁ«‘wﬁ‘;zgﬂ m’ ‘3%%— ﬁ-m@
1\ :'(vmmplcs(. ((((
VAR number, hexnumber : INTEGER;
character : CHAR;
line : ARRAY (80} OF CHAR;
BEGIN)
READ (number); {* read a decimal number *)
IF INVALID THEN WRITELN ("bad number™),
READ (hexnumber $); (* read a hex number *)
IF INVALID THEN WRITELN ("bad hex number”);
READ (character); (" read a singlo character)

READ (hine), (* read a line into an array *)
END.

FOR
FOR wuriable : = expressionl TO expression2 DO statement
Expression] 1s evaluated and assigned to the variable, It is then compared to ex-
pression2. 1 it is less than or equal to eapression2 then the statement is executed.
Then 1 is added to the variable, and it is compared to expression2 again and so
on, until the variable is greater than expression2.
FOR rarwable : = expression] DOWNTQ expression2 DO stalement
Expression] is evaluated and assigned to the variable, It is then compared to ex-
pression2. I it s greater than or equal to expression2 then the statement is executed.
Then one is subtracted from the variable, and it is compared o expression2 again
and s0 on, until the variable is less than expression2,
For example:
FORj:= 1TO20DO
WRITELN (i)

FOR k := 100 DOWNTO 20 DO
WRITELN (k)

CALL
CALL (expression)

The CALL statement transfers contro} to the machine-code subroutine located at
the address which the expression evaluates to. For example, to call the ‘close all
files’ routine in the Monitor Kernal (at address $FFE?) you would say:

CALL (SFFET)
It is possible to sct up the A, X, Y registers and condition codes before the CALL

and examine them after the CALL See the section on ‘Machine Language Sub-
routines’ for more details.

QOther statements

There are other statements with specialized uses which are G- Pascal extensions
for the Commodere 64, which control the cursor, graphics, sound effects, clock etc,
These are deseribed in more detail in other sections of this Manual.

24

(‘ ﬁ;xng,usxd‘\“< (

X By 000 B

s

fo ¥’
O O O
An expression {or ‘arithmetie expression’) forms part of the definition ﬂ)f g.t?y‘
o : st . annii s
gtatements, as seen prv\'immlv. For exantple, an assipnme it statement :‘;““‘*-“; \L1
1) b b h A A) ' ' .) ' ’
result of the evaluation of an expression to variable, Like the d(h.m!mns ur';
.) L ey " fe penge ™ . DS
block and o statement, the definition of an expression is cursiv e, that l.s,l an t‘x; n(,(
cion can contain another expression. Expressions consist of a combination
operands and operators. €.8.

5
A2
(a*blc) + 14

Operands _
array-name [index-expression]
constant
function-name
function-name (argumcnf—list)
variable - , .
{ expression)

Operators
(In decreasing order of precedence):
NO"

*/ DIV MOD AND SHL SHR
+ - OR XOR
= HEOIL= 0=

Precedence controls in which order the expression is evaluated. Since * is on a
higher precedence than + then the expression:

D ento 8 i iplication i » the addition. Where
evaluates to 85, not 130, since the multiplication is done before the addition. e
operations of equal precedence are plje'sonlcd then they are_cvn!ua{tcdhfrm&frc‘a“
right. Since the operators AND and OR are ona higher pref‘.odc.nu: l‘ar;‘ r; o
tional operators { =, <, and so on) then conditional expressions ge nerally req
parentheses around expressions combined by AND and OR. :

For example: b< 10) THENC
'Fl((E:li‘sp)ag'i\(hvsvs were omitted G-Pascal would evaluate ‘5 OR b’ before

0 doing the relational tests, which would probably not have the desired result. |

R
(

q i(K:I\N!Ngl JF 0'(x.l(ATO(hJ (({ (((

NOT '

NOT reverses the value of a boolean upvm‘nd‘ Unlike all other operators which

are inserted Pelieerr two operands (e v the expression: 4+ 6 the upcr..\tnr f

comes between the " .|ynd the 67, NOT precedes a single operand. 1t its operand

;:\‘1(()’1['“,‘\,(.:‘]:::-iltvllr‘:,)(-(:‘ll;\(:_\;:_)l makes it talse (zero). 1 its operand s false (zero) then
REPEAT game UNTIL NOT alive;

»

* is the symbol for multiplication. It multiplies two numbers together, e.g.
salary .= wage * 52;

/ and DIV
/and DIV are synonymous and are the symbols for division. They result in integer
division, (If the division cannot be pur!'u'rnwd exactly then the remainder is Lgi"is-
carded). e.g. ’ A
‘ inches : = feet/ 12,
The remainder of a division can however be established with the MOD operator.

MOD
MOD re . the remainde ivisi
ilsxrl'g"[‘)c)r.cél.xé.r\s the remainder of a division {often known as the modulus — hence
diceroll := RANDOM MOD 6 + 1;

/
AND
‘.AND performs a boolean ‘and’ of each of the 24 bits in the two operands. That
is,‘a result it is on only if both corresponding bits in the operands are on. The
:()rr:ml use h;r AND Ils in the conventional sense of checking that two conditions
re true simullaneously, however it can also be use ‘mask’ :d bi
o o ¥ o be used to ‘mask’ vut unwanted bits
IF (a» 4) AND (b 5) THEN (* check both conditi rue *
) 3 conditions are true *)
IF PADDLE (2) AND SFF THEN (" isolate low order byte *)

SHL
SHL performs a “shift left” operation. It takes the first operand and shifts it left
l.hz.' number of lgxts specified in the second operand (maximum of 24 shifts), tach
bhgt l('fl kls' vqmv?lvnt to multiplying the first operand by 2, so SHL is a2 simple
and quick way of raising a number to a power of 2. For example iply
number by 2 to the power 6: b P t'- to muliply 2
result 1= number SHL 6;

26

® O

Ehdksl 0 diNecl 0 Golules 0 WeXegl 0 BGGS 0 peNEma 0 Bebeew

srm(((

st pvrfurmsS fift right' operation, 1t wahes Ug\- arst n;(end .m(,nf(' () \‘! (
the number of bits specitied in the second operand (masimum of 29 st Iam.;
shift right s equivalent to dividing the first up_vr.m}l by 2, s0 SHR is a simple and
quich wav of dividing, a number by a power of 2. For example, to divide a number
by 2 to the power o:
result : = numbor SHR 6;

+
+is the symbol for addition. It adds its two operands together. ¢.8.

result ;= a + b;

- is the symbol for subtraction. It subtracts the second operand from the first,

Kklingons : = klingons - 1, -

OR

OR performs a boolean inclusive ‘or’ of each of the 24 bits in the two operands.
That is, a result bit is on if cither or both of the corresponding bits in the opvr..\nds
on. The normal use for OR is in the conventional sense of checking that either

are .
also be used to ‘turn on’ certain bits

of two conditions are true, however it can
in an integer. ¢.g.
IF (a>4)OR (b «5) THEN
mask := mask OR 1;

(" chack either condition is trug *)
(* turn on low order bit %)

XOR

XOR performs a boolean exclusive ‘or’ of each of the 24 bits in the two operands.
ither of the corresponding bits in the operands are

That is, a result bit is on if ¢ ‘ .
on but not both. XOR is a G-Pascal extension and is less likely to be used than OR,

however one important use for XOR is for togghng a bit - that is, turning it off
if it is on, or turning it on if it is off. This can be useful when defining your own
character sets - the ‘inverse” of any character can be obtained by XORing the charac-
ter with SFE. This will switch any T's to s, and any 0's to ¥'s. €.8.

b:= b XOR 1; (* toggle contents ofb*)

byte : = byte XOR $FF; {* invert contents of byte *)

=(HEOL= 0=
The above symbols are all ‘relational operators’. That is, they return a boolean

value {true or false) depending on whether or not the relation is true. The result
of a relativnal operation will always be zero (Halse) or 1 (true). Relational operators
are usually used in 1F, WIHILE or REPEAT statements, however they can be used
an_vwhcrv'lhat an expression is permitted. e.g.

iF ships < 3 THEN.

IF answor ~ 6 THEN

result ;= b>= 4,

27

.

(ki S % prS e
OO T
wOTES ON THE COMPILER
ARRAYS

!mi\y,:c dimension arravs only are permitted
nevded 1L s eany ‘rite 8t) .
nocded 1 Ty t‘u '\\ ite functions to simulate them For example, i vou want
. 1Y ! 1AV b RV - : Y ’ §
n by ;hx x\, (t;‘. .x{n u;\xr array as having 120 elements (8 times 15) and writ
b at maltiphies the tirst subserip by the second sut ot
@ function T stosubseript by 8 and adds the second subserd
gl; s‘\' each combination of .subscrxpt\ ‘m.ups’ onlo a unique clement b et
Subscripts mast be end ithi » e
M psed within square bracke T
o : in squ ackets and). 'se \
.\‘l ove the colon and semicolon ¢ and ;) on the keyboard “ B These are tocated
: ; ard.
h.z:'\gc checking of arrays '
No range checkmy s carried T
1y y oo out on any arrays, This mea i
AR ' 1 ys. This means that if you declare a
e 'd(‘b(,:n: and wnte to the 1hh upwards, or to the -1t ai(ﬁx'l\\\'\rd; lh((:1
) . v 1 1 ‘ . ‘
ber” something unespected. This may cause v : . ;
or behave strangely, or quite possibly the entire G " .;1 ¢ vour program to ‘crash’
v, ssibly entire G-Pascal syste ; ;
e o, ite v the -Pascal system mav crash
S . . . 4 .) i |
and also ‘stack -t son for this is that ‘return’ addresses for procedure or function calls
H h N > (5087 ! ‘
and o “(» rame .yddrv»ssv:» are stored on the stack, right nextto your vari 11:1\ ql
- r N » 3, 9 : N X) “.
then “\ft‘vdi‘n‘- Tl:mi i% ule{hm{d as the first variable within a prnccdlirc or l'm(icliun
 the bounds of a declared o }
. rray by jus Coleme
et or Fonesion fose frack ‘ array by just one element could make the
may exceed its declared | iy ’m_klr; of where ta return to. If you think an array variable
ye h clared xnonds brald @ check nito { . ‘ }
¢ OUF Proy s’
Array allocation your program to make sure it doesn’t.
Arrays are all .
‘ ocated downwards iy This is i
\ s in memeory. This is imp i i
Y. § ortant if you are storin
S B

(!(k’(‘lt }.\u}" d arrd PXE ' ag « y, g

{ M p OF) ¢
1 Ma I\Hl INPUAEE rogram in an array, tor exam)lL. lll 3 paven arra lh(. h| h(.Sl
array (."l_‘“lt“(has “l(.]UV\ est l“L‘l“Oly dddl‘.‘gs

q

e T e
¥ muli-dimensional arravs are

’P?}OGRAM' STATEMENTS

 Programs do not start with the word PROGR

R s _ e e word P AM. A program must st i

:,3 CFBIEJ%I, VAR, PROCEDURE, FUNCTION or BE(]IN;. l~‘§ilin 3 thiq :hﬁﬂ‘Wﬂh s
ge ‘BEGIN expected” will appear. s, e emor e

7

CONSTANTS

Constants (a con s i
ante stant is a factor in an ex 5
onstan| ' pression that does n d
the execution of a program) can be expressed in one of four w "“ 'Chanfjc !
n of & program) can ¢ ways interchangeably:
e al constants: for example: {196, =33, +99
vcimal constants are sim 51 Jumb
: simply signed numbers t 4
range from ~B3KK60Y to + BIBBET to the base 10. They may
Warrung - e ‘ ‘
of o m””r’;:w s_m’a,_ the muf;nlcrl interprets a plus or minus sign directly in front
of a monber as heing _Nw sien of that mumber e.g. -5 then when usiny plus
or 111; .\tl\]ns for arithmelic {addition and subtraction) then at least ;mt:" Jmce
it !:’ ow the sron if the next symbol 1s @ number. In other words: *
ac= b+1; would B
v L » a 3 ’ %
give an error because the “+° would be interpreted as the sign of ‘I, not
.

L i ; ¢ Lor [h > COrre Wdy P B
ana idﬂl()” operation, cc :
t to re resent “l(.‘ ab@vc W()uld bQ.

i} l'lp);ad.vcimal constants, for example: $A1, $FFC
. :,,xm. ecimal constants are unsigned numbers to the base 16, Th
range from S0 to SEFFFEF. The *$" s required. ey may

28

g

]

NO”

AU

. i ; Gaa i
(Strin(wt.m(w (‘\Q e 7(ES
String corl s are A stineg, of be. and chn(es, of
closed i quotation marks. 11 onty one or twe characters appear s s b
then the high-order Pyleds are sel o zen. Therelore wien comparing W
ar moving, o ur from, a UHAR type variable only one character shoutd
appuar betveen the quotes as CHAR variables are only one hyte fong. The
use of two or three charavter string constants would prmmz'i(v be restricted
to .\;vphm!imw which involve a 1ot uf ‘word’ waork, such as Adventure-type
games or other appheations which involye three letter commands.
A string, constant cabe will be stored as:

“g" 4 "b"* 256 + "¢ * 65536

or in other words:
M

“a" OR “b” SHL 8 OR "¢ SHL 18

4 1dentifiers which appear in a CONST declaration.

For example, if the declaration: CONSTer = 13 ‘

then ‘o’ is considered to be a constant. The use
of CONST declarations for constants is highty recommended as they make
the propram much more readable and casy to follow. For example: WRITE
(chr(147)) and WRITE (chr(t:lmrscrvcn)) will both clear the screen (if clearsc-
d to be equivalent to 147 in a CONST dedlaration) but the
r when reading the progrart.

appears in the program

reen’ is declare
latter makes the intention much cleare

DATA TYPES

Integer
Integers are stored as J-byte signed numbers and therefore range from

-£388608 to 8348607,
Char

CHAR type variables are stared as one byte cach. No type checking is carried
out by the compiler 50 in fact INTEGER and CHAR variables may be used com-
pletely interchangrably in G-Pascal, except:

a) CHAR variables have a different mea

READ procedure. _
b) The result of an expression stored in a CHAR variable will be MOD

256 (that is only the low order byte will be stored - the high order two

bytes will be discarded). Therefore a CHAR variable will always be in the
range of 01 255 (or S0 to SFF).

¢) CIHTAR variables only use one

as integers - particularly important in big arrays.

.Other data types

Other data types ar¢ not supporte
verting from other PPascals” for hints on

cal).

ning o integer variables in the

third the amount of memory 1o store

d, nor is the TYPE statement. (But sce ‘Con-
how to simulate other data types in G-Pas-

ELSE CLAUSE
The ELSE clause may bhe u
associated with the most recent un-ELSE-ed 1F.
The ELSE dlause may also be used with the CASE statement o cause 3 statement

to be executed if none cf the labels agree with the case selector.

wod with the IF statement, in which case it is always

29

(

P2 B S

MEM m(RAY((
(read this if you like peeking/pokeing)

lll(_' 1\” \.(dlld) is n(‘*dl fin 1 m arty « . 8
h } T {
eger array starting it a !{l >SS zero
. }., & JUUTESS zero,

FRED : = mem [$5000 J;
would place in FRED the 3 bytes in memory, starting at address $5000;

or:
mem [$5000) : = $ABCDEF:
W(Zslld g!(vr('.‘a.kilt'l)l-'l-' in memory addresses $5000 to 55002
'Cn‘?;l'“‘:'L L..l.vvl.uss use of MEM as a receiving tichd as in the second example) could
ash’ your G-Pascal system or destroy your program. Use with care!

A H Ht canin U 1 « & t < y } -
N h ! «ll‘.\("llll‘ ¢ (3 L} 1 l m f Ml IVIQ m Ykl‘q OUr pro

nother tfon se of ad h S80S Vi 1\ LN ng L
prams ma hlll("ll(!'('”d('ll' «\“d not Pl" (n‘l"('

! A thind caution: The subscript of the MEM array is alw
bl(l)l‘(h .!:::{1:05.\‘) .isx; that N]H;M ll()) and MEM J1] in fact overlap by two bytes — they
share addresses 1oand 20 This is unlike ordinary i ’ ere i
poth share addres s ary integer arrays where es
oceurrence’ represents an address 3 bytes away from it ncigl:buur y ere cach

MEMC ARRAY

The MEMC array is a pre-defined CHAR ' i i
for pecking okt si,ﬁg]c byt array starting at address zero. Use MEMC

v

avs il\l(‘l‘"l’l‘((‘d as an abso-

ADDRESS

The run-time address of a variable can be establ
5¢ ariz 2 e establishe
ADDRESS (identifier) established by the

function. For example, to find th ¢ i
. ’ , ¢ address in memory of FRED:
The AL ADDRESS (FRED); 1y o FRED:
e DRESS function would only b i
‘ DR y be of interest to more experienced -
mers for spedial purposes such as calling machine code r()ulimgs c()ntnim‘%r(iﬁirlal:?n

an array, or passing the addres i
. sing the address of a variable to a procedure. It i
and therefore not portable, P dure. ftis uiaue to Gebaseal

LOAD

The LOAD statement will load a file from disk or casse
The LOAD staterment takes the following form:
LOAD (device, address, flag, filename);

The “deviee’ represents i i
vvices represents the device number which is 1 for cassette and 8 for disk

tte under program control.

The “address’ is the address to whichr the data is to be loaded. The flag’ is O for @ '

2 Load and 1 for a Verily, The “filename’ is i
. : /. The ametis a string contaning the fileng
”“/.\lt(l)t‘;(a(d l(;;t’l\ tIh(;' l.)lult-m function INVALID should be (';;vv‘l:vc;.(lrn,t“i:?cr() then
o 3 s UK Hitis non-zero then INVALID contains the error code.
LOAD (8, 31000, 0, “FILEA");
IF INVALID THEN WRITELN ("ERROR", INVALID , "ON LCAD™;

SAVE
] Hu_: SA}/H statement will save a file to disk or casse
The SAVE s{:m-mcm takes the following form:
SAVE (device, start -address, end-address, filename);

tte under program control,

30

¢

L e e e

~—
6‘:

[e S S Sl &

The “devicd presents the device number which is 1 for cassette .\r‘ < for disk,
The “start-address” is the start address trom which the data is to be saved. The ‘end-
address” s the end address of the block of data to be saved. The “filename’ is a
striny; containing the ilename.

It the start address s greater than or equal 1o the end address a run-dtime errot
will oceur.

Atter the save, the built-in function INVATID should be checked. 1€ it is zero
then the save was OK. 1t it is non-zero then INVALID contains the error code,

e

b SAVE (8. $1000. $1800, "FILEA™),

IF INVALID THEN WRITELN ("ERROR “,INVALID, " ON SAVE™);

SAVE may be used to save a Dlock of variables trom a program so that they can
be loaded back apain later on (tor example, saving the current position in an adven-
ture pame). In this case remember that vanables are alfocated downwands on the
stack, so that the lowest memory address is in fact the last variable declared. The
safest way of doing this is to declare two ‘dummy’ variables to pinpoint each end -
of the variable data, like this:

var firstvar : char; (* first program variable — highest address *)
ab.c.del:integer; (* all program variables go hero *)
ij.klLm: char;

(*andsoon*)

lastvar : char, (* last program variable — lowest address *)
begin

save (8, address(lastvar), address(firstvar), “varfile”);

load (8. address(lastvar}, 0, “varlile”);

end.

Of course, this technique will only work if the number of variables is the same
between the SAVE and the LOAD, in other words, if the data declarations in the
program ase the same. '

GETKEY

GETKEY is a function that indicates whether or not a key is being pressed on
the keyboard (or is in the keyboard queue). If no key is currently being pressed
it returns zero — if a key is being pressed it returns a value corresponding to that
key. '

To make a program wait until any key is pressed for example just say:
REPEAT UNTIL GETKEY;, '

However if you need to know what the value of the key is then it must be saved

in a temporary variable. e.g.

REPEAT
KEYVALUE : = GETKEY; '
UNTIL KEYVALUE;

CASE KEYVALUE OF (* and so on °*)

Normally you would use the READ statement if you want to wait until a key
is pressed. GETKEY is intended for applications where the program wants o occa-
sionally check for keys being pressed on the keyboard but do other things in the
meanwhile if they are not,

ABS (value);

The built-in function ABS returns the absolute value of its argument. In other
words, ABS will always return a positive result, whether or not the argument is
positive. This can be handy for establishing the distance between two points, regard-
less of which one is greater than the other. e.g,.

distance .~ ABS (x1-x2);

31

4
'

A Pty Bl we RIS
A%

o b RS R - B
,Xn'ﬂ’Lg‘; 1’RCSwRA(“«

(* ERATOSTHENES SIEVE PRIME NUMBER GENERATOR %L)

CONST SiZE = 1000;
TRUE = 1,
FALSE = 0,
HOME = 147;
PERLINE = 5;

VAR FLAGS : ARRAY [SIZE] OF
R FL : CHAR;
LPRIME K,COUNT,ONLINE]: iNTEGEFl';

BEGIN
COUNT := 0;
WRITELN (CHR(HOME));
ONLINE : = 0 (i
FOR1:-= 0 TO SIZE DO
FLAGS [I] : = TRUE;
FOR!:= 0 TO SIZE DO
IF FLAGS [i} THEN ’
BEGIN
PRIME := | + 1 + 3;
K:= 1 + PRIME:
WHILE K <= SIZE DO
BEGIN
FLAGS [K] : = FALSE;
K:= K + PRIME
END:;
IF ONLINE > PERLINE TH
BEGIN eN
WRITELN; (* NEW LINE *)
ONLINE:= 0
END;
ONLINE := ONLINE + 1;

i

COUNT := COUNT + 1;

WRITE (PRIME,” ")
END;
WRITELN; WRIT " "
ey ELN (COUNT, " PRIMES")

32

T

(ol il \iY(RE JGL M((¢ (

E L

{
Compile :

1 vou select ‘Compile’ from the Main Ment or Editor your program will be com-
pi!mi and converted to Poeodes, ready for Running. You may select a listing of the
propram lo appear during compilation, of change the address ot which the {-codes
are located by using the Comptler Directives deseribed below, H the compile is suc-
cossful (no errors) you may immediately press ‘R (tor Run) to test your progrant
Synlax

The ‘Syntax’ option also compiles your program, however it dovs not generate
P-codes so you must do o Compile afterwards it you have no errors and wish to
run your progran. As P-codes are nat gencrated the %1 compiler direchive {display
P-codes) dovs not function {acts the same as %), in all other respects Syntax and
Compile are identical. The main use for ‘Syntax’ is to check for errors if the P codes
are going to clobber the source code during the compilation process (this &R only
happen if the %A compiler directive is used). In this case, use the ‘Syntax’ option
to check that the program has no errors, then save it to disk or cassette, then Come-
pile it.

Asterisks

1f you do not request 2 listing an *" is displayed on the screen as every 32 source
program lines are compiled. This is to reassure you that ‘something is happening’,
and give a visual indication of how fast (and how far) the compilation is proceeding.
Errors

It there is an error in your program the compilation will stop with an arrow point-
ing to the symbol being, processed when the error was detected (this not necessarily
being the actusl cause of the error as such), the word s+ Error’ and an English
error message. See the section ‘Compiler Error Messages’ for details about the mean-
ing of errors. »

COMPILER DIRECTIVES

Compiler directives are special symbols inserted within comments to cause G-Pas-
cal to take special action during the compilation, such as producing a listing or plac-
ing the P-cades at a ditferent address.

Compiler directives must appear within comments (i.e. after a (* symbol, and be-
fore its corresponding *) symbol} as they are not part of the Pascal language as such,
They consist ot the percentage symbol (%) direetly followed by a code letter indicat-
ing the type of directive. The code letter may be in upper OF lower case. These
are described below.

%L (Listing)

The %L directive causes a listing of the program (with the P-code addresses dis-
played on the leftin parentheses) commencing, with the Jine on which the %1, direc-
stive appears. The listing is the same as an Editor List, except for the P.codes on
the left. At times knowing the P-code addresses is uscful, partivularly when a run-
lime error occurs (such as Divide by zere). In this case the address displayed when
the run-time ¢rror occurs can be used to locate the line in the program which caused
the error. '

The %L directive would normally appear in the first line of the program, however
it may be placed further down if only a partial listing is desired. Listing may be
turned off with the %N directive.

(" %l %)

33

S, €0 TC T T

the %N directive stops the compiler from listing the paogram as it compiles, In-
stead, an asterisk is displayed as cach 32 program lines are compiled. This is the
default,

(0 %N -’

%P (P-code listing)

The %P directive causes the compiler to list the program, and also to list cach
P-code that 1s generated tor cach statement. This directive would not normvally be
used, unless you are interested in what Pecodes are gencrated for each statement,
See ‘Meanings of P- codes’ for a description of what cach P-code means. Like the
%L directive *i 1" is cancelled with an %N directive. '

(' °/°P Q)

%A (Address of P-codes)

The %A directive defines where the P-codes are to be
tion process, It should be followed by a decimal or hexad
‘Constant expected” will appear,

It s essentwal that the G A directive appear at the very start of the program, before the
first CONST, VAR, PROCLDURE, FUNCTION or BEGIN. If this is not done the P-codes
will not be compiled contiguously amd a run-time error (or worse) will happen when the
progrant is run.

If the @A directive is omitted then the P-codes will be placed directly following
the end of the soutce program. This is the usual and recommended method of com-
piling. The <A directive should only be used if the ‘Memory Full’ error appears
during compilation (which means that there is insufficient room at the end of the
source program for the P-codes), or when compiting, independent modules.

The address for the P-codes must be chosen with care. The permitted range is
$800 (just after screen memory) to $4000 (overlapping the source program). Qutside
this range the error message “Number out of range’ will appear. A P-code address
of $800 would be sensible tor many applwations, however care must be taken that
DEFINESPRITE statements and bit-mapped graphics do not clash with the P-codes.
Sce the "Memory Map’ section in this Manual for more details about what memory
addresses may be used for which purpose.

In the event that the P-codes are placed at $4000 (the start of the source
or jusl below, then the compilation process will couse the
replaced by the P-codes, thus effectively destroying the source
cumstances it is.essental that the source program be
otherwnse the source program will be lyst.

As the compiler is a single-pass compiler the technique of ‘clobbering’ the source
program with the P-codes is an effective method of making maximum use of avail-
able memory, however there is the inconventence of having 1o re-load the program
from disk or cassette after each Compile. Remember that the “Syntax’ option is a
method of compiling the program without generating -codes, and should be used
to ensure that there are no compile errors before the final compilation which does
generate P-codes is done.

Examples of the % A option:

(" %A 3800 - place P-codes alfter screen memory *)

placed during the compila-
ccimal address or the error

program),
source program to be
program. Usder these cir-
saved to disk or cassette before a Compile,

{* %A $4000 - overwrite source code with P-codes)
34

[—

e i et e 1w

(

(
COMPILER! IRUR h&ussm,ns (

R .
error messages. The messagles appearin Enplish, a
will point to the symbol currently bring

. ' proy
1t the compiler has detedted the erd of the progr
point to the

o0 CoC (¢

it will re ne of 36
wets an error in the G-Pascal program it will return ”l“ o
ness. given below. An upwards arr 1
' 3 . TR TL2
processed when the error was de hdu‘{]
* am uneypectedly the arrow wx)
* Tt .) is missing).
tast symbol in the propam {tor example st the final p(.rlm:i.l(“)‘”y P(,;m{,’.g
{ ;s \. the error will be in the symbol that the arrow s '.)l ”. lly poin g
N SOME Case . P N ber out of range). x 0 ‘
- selared Identitter” or "Number Jna
o e crton " srror of omission (For exvample, the message 5 eX
lot of cases the error will be an erro s L revl
cted’ usually means that a semicolon has been (\mllht\ ((e abtem previ
Mo 1 it cases : sage usually reters o some '
s B, '-ff;""‘ ';“'-\‘"‘}; the rx‘xt"\x\ix\g of an error is not pbvious,
wiots stateme w clouse. Theretore, me ot or is not ous
D ot vaamme el » Jast ten or so lines prior to and including the line costasmng
list and examne carefully the last b

the error.

Al errors are f ‘ r :
is hatted and the compiler aumthully Te VS
be corrected. As G-Pascal compiles very rapidly «
is a quick and easy process.

The list of error messages be dod 2 5 g0
surrounding a given error - they should hvg lln u : “.w uiing
‘ ‘mes s are i '+ and lower cas

e e charmcter set to upp ugrrz:!rl(:wcr case before displaying errors.

itche set to upper ¢ S
switches the character

If the compiler det

; J ilation
5 srror occurs the compil

- or words as soon as an ern ‘ ;
i turns to the Editor so that the error can
ection and correction of errors

fow is intended as a guide to the usual circumstances
: anding a particular error.
ompiler automatically

d I3 » N " . ,=
T?;p::::piler is processing a CONST declaration and is expecting an

. g 1),

to come between the constant name and its value. (e.g. CONST TRUE = 1)
- e 3 ent and is
. T}‘:(’fpcf»fnpilor is processing an assignment stalumelr:lt or a FOR stateme
expecting a :="to follow the variable name. (e.g. K: 1;).
; expected . .
’ 'I'IE’(' compiler is expecting a semicolon.
the previous statement,
; or END expected _
" The compiler is processing ﬂrfj(l)m?o;:nd st "

(G i i IND. 1t has come
4 BEGIN and ending, with an E : ;2
expects either a semicolon followed by another statement, or the

’

sign

t is probably missing from the end of

atement - that is, one beginning with
to the end of a statement and now
word END.
¢ > a, followed

' c'l)‘(i{)(-e(c‘(t)empilvr is processing a list of arguments and now expects a comm
by another argument. {e.g. CURSOR (6, 7))

. : i ecting, a or colon
' (')li_’h-(’e:(f:;'lﬁ‘r is processing a CASE statement and is (;’,‘(52(chs.;,“a{ c(;,;?leti(m ton
to follow the case selector, or the compiler is prqceijpd;,‘ at.“cr e lVAR X, Y,
is expecting a comma or colon to follow. the previous identitier. {(e.g.

Z INTEGER;);
35

.
;
i
1
i

/!"xg _icd(| ((

R
U Che compiler s (
i }:r})l'irt \.s“pmu ssinga statement that requires { anents to be supplied
dbrackets (tor example, arguments lared prove : o
R , nts to o users declared : i i
i round brac g \ S clired procedure or fune
' arguments toa built-in procedure such as CURSOR). However it ¢ i
e e et ¢ - However it cannot find
) expected

o . {

lll(” l('h.)‘v‘- (d}((l"ﬁ\' j i OF ary L S« { }((Jd ClOs-
1 lv‘\h ¥ S8y a h‘s(Woarnsum ‘nt mn 1 now expects a ‘l Q

Hly 'h“(“l”“.\ h B ’(¢ it ¢ find ¢ : Fhis Iy (lli(n ; ‘ AT
¥ | 1 1O eNVEer | annot iin { LIATAN tserror may appear if an petinent
1 A « < . t $ €
l\} cd or a comma wh (' 5 (’Uld S¢ } arate argumen is on llul
S s ' ‘vh | ts i.

[expected :

The compiler is i
Cr iy processing an array 3

The ¢ er s p ‘ { wame (or an array dee i
pects a subseript inside square bmckct)s (oy decaration) and now o
| expected
_ The compiler has finished processing an array
ing square bracket. ‘
»
) expected

subscript and now expects the clos-

The compiter has reache r e J is shill i
processing fl comment., T:\Z-k:vrll‘l:.‘.l(wlrz'dc.:llrsz'h:wl E‘I:::ers‘?l\ hl'lt e a3 e of
has commenced with (* it coron,
. expected

There is no period following the fi IND
BEGIN cxpciwd ollowing the final END in the

Tl o~ e . . N
ml';ﬁ‘,;:”f,';ml]f\:. I:t [;r‘oul‘.ssl‘n‘g a block and now expects the word BEGIN to mark
s o v ;1‘(Inunli\ in that blml‘k 11 they have not already been declared
s [:;:jy\"cf*z&;j‘";s‘ .ll n.rl the compiler will also accept CONST, VAR, PROCE-
o put he wend m?('l«l\t’tln‘l;:lums. This error is usually caused by either forgetting
Do, o 1,1,1\},1,va u.f)rc U'}C :;mtm‘m‘nlﬁin a Procedure, Function or‘ main
B aki 5 a mistake in the CONST or VAR declarations (such as mis-
pelling CONST for example) ™
((;ntpilcr limits exceeded
“ it is unlikely this err i if i
I, curm{:Q[yh;;olc::;;nv;" appear. However if it does simplifiy the statement
Constant expected

20)1 h: lf::\;:iivr s cxpcctinﬂ a constant, in other words one of: a number (such a
m‘,’ E \ x constant (such as SABCD), a string constant (such as “xyz”). iden.
ler declared as a constant in a CONST declaration . Y2, or an iden
Df;ia type not recognised .

e compiler is processing a VAR declarati
INTEGER or CHAR. P : declaration and b
DO expected

The compiler is processin
. ¢ a2 WHILE state
{e.g. WHILE X > 50 DO ...). i e
Duplicate identifier

' rogram a comme
\ : au ' I ent
but was not terminated with its corresponding *Y.

program.

as not found either the word

ment and now expects the word DO.

The program i ‘mpli .
illegal ({ir(‘l};;:z‘.u’\l:ﬁtt(l'l“r-hn{: to use the same name twice for an identifier under
is o “global d(dar.n.j(.," (',?: l;;‘t‘rn.nrtlcd to use the same name twice if one occurrence
(inside a procedure 4t the 5“”}_"’ the program) and another declaration is ‘local’
p ure or functton). The same name cannot be used twice within the

samice ‘group’ of declarations J ‘RED, FRE T
S I P cclarations, for example VAR FRED, FRED : INTEGER; would be

35

./ =,

[

(T T T
1dentificr expectel \ &
The compiler is processing @ CONST, VAR, PROCEDURE, or FUNCTION dt . ara-

tion, or the argument to the ADDRESS function, and is now expecling a user-sup-

plied identifier. (.5, VAR FRED).
Hlegal factor

The compiler is processing an expression and finds an illegal factor. This could
be caused by an itiepally constructed arithmetic expression {eg, 5o+ %), a missing
argument to a procedure or function (e.g. WRITE (), or a missing expression where
one is expected (e TFTHEN).
Hlegal identifier

An identitier has occurred in a context in which it was not expected.
Incorrect string

The compiter has detected that a string literal is not where it should be or is not
terminated. In the case of the LOAD and SAVE statements this error will "ecur
if there is no file name where one is expected, otherwise the error is caused by
an opening guote symbol on a fine but no corresponding closing quote symbol. (e.5.
“HELLO). In this example the upwards arrow would point to the 117 in 1 1IELLO.
Incorrect symbol :

Ihe compiler believes it is at the end of the program, however it has found more
program followiny the final period.)
Literal string of zero length

A string of zero length (e, two consecutive quole symbols:) was encountered.
Memory full

There is insufficient room for your P-codes to follow the source program. Reduce
the size of your program, or place the P-codes at a different address than the default
one of at the end of the source program. See the section on the %A compiler direc-
tive for details on how to do this.

Number out of range .

The compiler is processing a decimal or hexadecimal literal and has found that
it is too large (or too small). The allowable range for decimal integers is -8388608
to + 8388607, The allowable range for hexadecimal integers is $0 to SFFFEFF.

OF expected

The compiler is processing a CASE statement and now expects the word OF. (e.g.
CASE recordtype OF ().

Parameters mismatched :

The compiler is processing the invocation of a user-declared Procedure or Fynction
and has detected that the number of arguments supplied to the I'rocedure or Func-
tion invocation does not agree with the number of arguments declared for the Proce-
dure or Function, .

Stack full

The compiler's internal stack has overflowed due to processing too many nested
procedures, functions or expressions. This message fo very rare, however if it does
oceur the problem can be corrected by re-writing the program with Iess ‘nesting’.
(A nested procedure, for example, is a procedure within a procedure within a proce-
dure etc.). '

String literal too big

The compiler has encountered a string literal in an expression, however it is more
than 3 characters tong. String literals of more than 3 characters are only allowed
in the LOAD, SAVE and WRITE statements. ’

37

T
Symbol table {ull

‘.,\Fli\'w il’;r‘(:(‘}"x“)d‘[.{"“ :(“‘I"L‘::Gw user-declared identiticrs (inother words, CONST
IR : toor FUNCTTON names). “There are three 8 utions to
s problem, Frat e - dhere are three possible solutions to
. Farst, 1w number of vartables it posaible. See ‘
et ot et Tt humb art possible. Second, reduce the

4 E 1 the Editor's Replace co Dy, ihi i
Tocal” to procedures or 1 b ’ ploce command). Third, make identifiers

. S or tunctions as much as posable. 1o i |

. o proc tunct s a : - Pocal Wdentiters (in othe
“:(‘};ri‘:_\" ¢ ‘4)_1\;5!“\’/\!\’,] 1\4(YCEDURE or FUNCHON declarations which .Erv :nﬂ:f:
er procedures or tunctions) only occupy room in the symbol table whilst tl
procedure or lunclion is being processed. - T
"{l:l.,)‘xlhi\x’x(;rt-}'i}"'l.)1:'11 ullvntilivr ovcupies 10 bytes on the symbol table plux"(h" fength

sdentihier. Inother words, the word FRED would occupy !)

symbol table ~ 10 plus 4 letters in ‘FREDY . . ould occupy 14 bytes on the
\ s in FREDY. The total Tengti i
. . o pl A . ‘ sthoot the symbol table
,l()“?(v.l'\ tes sethere is room for 250 identitiers it each is 6 charactors long e s
THEN expected T

The compiler is processin 8

n s ssing an IF statement and now expects a ‘“THEN'

the conditional expression. (e I A = 5 [HEN) o epects o« TTHEN o follow
TO or DOWNTO expected

The compiler is processin :

e compiler is ssing a FOR statement and now expects the words
[?()\\/ NTO. (e FORx: =1 TO 10 DO . prcts the words TO or
Type mismatch
F”:I(u:);:;':;r rarely occurs because G-Pascal allows mined type operations in general

"X ¢ You may assign o integer variable to a char variabl : i :
i et oy ' ! a char variable, However this error

gram cither: a) attempts to read a string into an i
or b) attempls to use a co , " 3 Side of 2 atsinmn
or by ¥ a constant name on the left-hand side of an assignment state-
Undeclared identifier
The identifier to which th i
. ! ¢ upwards arrow is pointing has not be :

e ientifivr & ¢ upy s ¢ en declared. Pos-
:1)([:!\t .n[s .nu.sapc.ll, ur no C()N?T, VAR, PROCEDURE or FUNCTION dvcl.)ntiosn
Dus,R} Urjl[('. ;’\IU{!:’HH{IM /\1u51 be declared before they are referenced, so all PROCE-

= and FUNCTION declarations must precede any attempts o refer to them,

‘Use of procedure identifier in expression

Illl' (U"‘Ipl](’l 1s pro “)S.I\ ! an expression ind fin 15 ”\(‘ name ()l a proc L‘dUlC WIIL'IQ
, ’, CeSst B¢ € } L d C p
h: » av ble, ¢ stant f -l h)ld]) »
the name Of a variavie, constant or function she U < ,,p(dl.

38

1
i

ey

((
RUN-TIM% IRROR MESSAGES

G-Pascal has only five run-time error messages - these are explaited below. A
run-time crror message is one that oceurs while g program is running rather than

compiling. When one of these messapes oceurs it will be followed by the words:
‘Error occtirred ot P-code vox’ where v s the address of the Peade (instruaction)
currenthy bring executed, Hthe meaning of the error s not immediately obvious,
write down the P-code address and then recompile the program, asking tor a listing
Juring the compilation. By referring to the I code addresses listed at the side of

the compilation listing you can isolate which statement caused the error message,

Break ...
The program has been aborted by pressing the RUN/STOP key. -—

Divide by zero ' ‘
An attempt has been made to divide by zero, which is not permitted. (The MOD

operator, which is a form of divide, may also cause this error).

Illegal Instruction
This message should not appear in normal operation. | means that the P-code

interpreter has encountered an invalid instruction (- code). This could be caused
by a program self-destructing somehow (perhaps by an array subscript going out
of its allowable bounds) or invoking an ‘independent” procedure which had not been
loaded into memory at the correct address. ' ‘

/
Nlegal parameter in function call

One of the built-in graphics or sound effects procedures or functions has b
called with a parameter (argument) outside its allowable range. For exampie, refer-

¢ 9 in a SPRITE statement will cause this error, or voice 4 in a VOICE
aking the range

cen

ring to sprit
statement. Not all paremeters are checked in this way - penerally spe
cheek is carried out where an incorrect argument could have disastrous cffects on
ver cases the supplied value is truncated to
the filter frequency specified for the SOUND
2047 - if the value cxceeds 2047 then the

the system if it went unchecked. In otl
fit into the required range - for example
statement should be in the range 0 to
supplied value modulus 2048 is taken.

Stack full : .
There is no more room on the stack for variable data. The stack consists of 3,790

bytes (this is the equivalent of 1,263 INTEGER variables or 3,790 CHAR variables).
_This could be caused by either declanng too many variables {e.g. an array of 2,000
integers), or by calling procedures or functions recursively too often. Each time a
procedure or funchion is invoked 6 bytes are reserved on the stack for “hnkage’ data
(such as the return address - the address from which the procedure was called)
plus any ‘local’ variables declared for that procedure or function,

39

{ _E HANDLING

I vou enter “F (tor Files) from the Main Menu you will sce:
(Doad. (Mippend, (P)rint, (D)os,
(Srave, (Nioprint, (V)erily, (Q)uit,
(E)dit, (C)atatog, (O)bject?

This is called lvh({\ﬁ,}:ilvs Ment’, To choose one, press the letter corresponding to
your choice (the Iefier in brackets). Do not press RETURN as well, To leave the
Files Menu and rcllg 0 to the Main Menu press Q' (for Quit),

The choices are: 7§ ¢
Load it A

This will Toad a G Pascal source program from disk or cassette, The loaded program
will replace any curre $ly in memory, 1f you do not want to load anything just press
RETURN. Yot will { fe! ‘

(C)assette ¢ {(D)isk?

Press C tor Cassg ;lc or D for Disk. Any other character will return you to the
Files Menu, fi

You will then see!

File name?

Type in the file g:",;me of the file to be loaded (the program name, in other words)
and press RETURE L When loading, appending or veritying from casselte the file
name is optional - f;f any file will do just press RETURN. The program will now
load. B

Warning: There it no check to see if the program is too big. It is your responsibility
to not load prograbas that are too big. This would not normally happen unless the
file was created independently of G-Pascal. If you do load a file that is too big you
will probably "clobber” part of G-Pascal.

Append '

This appends a program to the back of one that is currently in memory. If you
do not want to append anything just press RETURN. Append is a powerful way
of copying usclul procedures or functions from one program to another. You could
build a ‘hbrary’-of useful procedures and functions and just Append them at the
appropriate poits in your program, thus saving a lot of typing and debugging ef-
fort. Apart from the fact that the Appended program goes at the end of the one
currently in memory, Append works the same as Load so see the "Load’ command
for what to type next. Be careful when appending that you do not append too much
to fit into memory. G-Iascal does not check when appending that there is sufficient
room for the new file.

Save

This saves your program on disk or casselte. If saving to disk then the saved program
will replace any of the saome name on disk, 1f you do not want to save your program
just press RETURN. Apart from the fact thal the program is being saved, not loaded,
the Save command works the same as the Load command so see the ‘Load” com-
mand for wh.‘_i_ to type next.

Verify |

This verifies. that the program recently saved on disk or cassette has saved prop-
erly. It reads tne file on disk or ras-ette and compares it with the image in memory,
Naturally for this to work properly it must be done before any changes are made
to the program in memory. Apart from the fact that the file 1s being verified, not

loaded, the Venily command works the same as the Load command so see the 'Load’
command for what to type next.

40

(Gl N
Object

This allows you to save your eades to disk or cassette, (('umpilv.d files are com-
monly called ‘object’ files), 1 you have not doene a erroe-tree compile \'nn.\.wll et
an crror messape. You will be asked for your object tile HJIIN‘..}HS(enler ',('\f n.’\]x;;\x;
and press RETURN, I you have selected "Object” by mistabe just press lxl'.l},‘
only. If saemy o disk then the saved object file il veplace sy file of Hhe same nante cur-
renthu o disk. Ulease be carctal that vou do not save vour object tfndvr the same
name as your ‘source’ propram - that is, your G-Faseal statements. You cannot con-
vert obiect code back to source code so i you lose vour source ('mh" you are in
trouble. However it you lose your object code vou can always recompile from the
source code. The object code is completely refocatable so it can be loaded at any

'$8
?Atii:il::ml change. You would do this for using the code as an in(1(';v('|1({vn‘l‘mudu‘lc
(see sechion on Independent Modules’) or for use with the run-time system (avail-
able separately).
:di 4
E(i'lt\is takes you directly to the Editor. it is useful to press ‘B’ while a program
is loading then you will be taken to the Editor as soon as the load completes.
Print) . '

This directs output to your printer. Further screen displays wall‘_nlsu appear {(Ln
the printer unless ‘Noprint’ (below) is selected or you press RUN/ST()P/R[;!?IOI .
Printing is also cancelled at the end of a program run. .) Eit l

To print vour program just press ‘I” for print (this option), then E (for Edit) anc
L (RETURN) to list the program, . .

If you have noe printer plugged into the serial port then you will gel an error
mMessage.
Noprint : o have

This cancels any previous ‘Print’ command. If you were not printing or have no
printer anyway this has no effect.

Dos } o

This option allows commands to be sent to the DOS (Disk Operating System)
in order to accomplish disk-oriented operations such as deleting files and so on.
After selecting this option G-Pascat will reply:

Command?

At this stage press RETURN if you do not want to send any command

\

©to the DOS, otherwise enter the command (as described in the DOS manual), and

then press RETURN.
C;'llgi;:il:)z(;vptiun will produce a catalogue (directory) listing of your disk. .I.?(olh(.'r
words, it will display on the screen the names of ail the files on your disk. Also
displayed will be the size of cach file and the amount of room available on the
disk. :
Meaning of error codes o
I an error is encountered in loading, saving, verifying etc. an error code number

will be returned. The meanings of the common error codes are as follows:

1 - Too many open files 8 - File name is missing

2 - File .-1In-.1'dy open 9 — Megal device number]

3 - File not open 10 - Unrecoverable read error / mismatch

4 - File not found 20 - Checksum error

5 - Device not present 40 ~ End of file .

6 — File is not an input file 80 - End of tape/Device not present

7 - File is not an output file

11

o\ ! (

| UPENING AND CLOSING FILES |
GaPascal allows vou to open and dose tiles, direct output to a file or obtain input

from a file, This is achieved with the tollowing statements:

OPEN (file, device, channel, “file-name’’)

The tile number may be trom 1 to 255 and is used to identify the file in subsequent
GET, PUT and CLOSE statements,

The device number identities the type of device that the OPEN applies to. It is
normally 8 for a disk, 4 tor a pranter and 1 or the cassette,

The ‘channel” (otherwise knoswn as the ‘secondary address’) i ased to send secon.
dary intormation to the device. I may be from 2 to 15 for o disk where 15 is the
disk ‘command’ channel. Other aumbers may be used for printers for special pur-
poses such as plotting, graphics, fower case and so on. :

The “file-name” must be a string of at least one character inside quote symbols.
It represents the file name when opening a disk tile, or the command when sending,
a disk command. In the case of printers it is ignored, so just a single space (")
will do.

The result of the OPEN is returned in the reserved word INVALID - if INVALID
is non-zero after the OPEN then an ercor has oceurred and INVALID contains the
actual number corresponding to the type of error that occurred.

For example, to open file 5 as the printer (device 4) you would say:

OPEN(5,4,0,"");
To open a disk file for output as file number 10 you would say:

OPEN (10, 8, 2, "0:DATA S W"),

PUT (file-number) .

PUT is used to direct output (from WRITE and WRITELN statements) to a previ-
ously opened file. All subsequent WRITE and WRITELNs will direct their output
;(; the nominated file an error will occur if the file is not open or is not an output
ile.

To re-direct output to the TV screen (the default condition) the statement: PUT
(0) must be issued.

The result of issuing a PUT is stored in the function INVALID. If INVALID is
zero then the PUT was OK, otherwise it contains the number of the error that oc-
curred.

GET (file-numbet)

GET is used o receive input {to a READ statement) from a previously opened
file, All subsequent READs will receive input from the nominated file an error will
occur if the file is not epen or is not an input file.

To receive vutput from the keyboard again (the default condition) the statement:
GET () must be issued.

The result of issuing a GET is stored in the function INVALID. If INVALID is zero
then the GET was OK, otherwise it contains the number of the error that occurred.

Botl GET (@) and PUT (0) function identically they issue a ‘clear channel” command lo
the Kernal, resetting botdt input and output to the defaudt operation of keyboard and screen
respectively. The files are still open, however and nwy be re-accessed with further GET and
PUT statements,

CLOSE (file-number);

CLOSE is used to close the nominated file. For example, CLOSE (15) closes file
number 15. All open files should be closed, although G-Pascal automatically does
a “close all files” at the completion of each run.

42

e

-,
{7-‘

THE GRA} _ICS COMMAND (
The GRAPHICS command is a peneral-purpose command which accomplishes 18
ditferent actions, The CRAPITICS command s suppli(‘d with pairs of arguments,
where the first is the action number and the second s the value to be passed to
that action routine. For example: GRAPHICS (mudhicolour, on, evtended hn'k'grumul,
off); For case ot comprehension, and to make your programs selt-documenting, we
strongly supgest that the action nuambers and colour names ctectera be defined in
2 series of CONST detinitions at the start of the propram, as shown lw!«lyw, l,f you
do this, then the command: GRAPHICS (BORDERCOTOUR, RED) and GRAI Hl(_hb
(11, 2) function identically, however the former makes the program much casier
to read. The exact spelling of the action names is up to you as they are not n-svrvg&t
words, however your spelling must be consistent throughout your program. .1 he
descriptions of the various actions over the next few pages use the spelieng gw;'n
below. We supgest that you key in the CONST definitions given below, plus the
ones for the SPRITE, VOICE and SOUNL functions, and keep them on disk or cas-
sette in a separate file for ease of use in the future. If you "v\'lSh you can omit the
action names for any actions that a particelar program s .nnt going, l_n usc‘-:
for example if you do not plan to use bit-mapped graphics you could omit:
BITMAP = 1.~ ,

CONST .

BITMAP = 1;
EXTENDEDBACKGROUND = 3
LINES25 = &

BANKSELECT = 7;
VIDEOBASE = 9;
BORDFRCOLOUR = 11;

MULTICOLOUR = 2;
COLUMNSA40 = 4;
DISPLAYSCREEN = 6;
CHARGENBASE = 8; -
CHARACTERCOLOUR = 10;

BACKGROUNDCOLOURO = 12;
14,

BACKGROUNDCOLOUR1 = 13, BACKGROUNDCOLOUR2
BACKGROUNDCOLOUR3 = 15; SPRITECOLOURO = 16,
SPRITECOLOURY = 17; WRITEBASE = 18;
BLACK = 0, WHITE = 1; RED = 2;
CYAN = 3; PURPLE = 4, GREEN = 5;
BLUE = 6, YELLOW =7, ORANGE = 8;
EROWN = 9; LIGHTRED = 10; DARKGREY = 11;
MEDIUMGREY = 12; LIGHTGREEN = 13; LIGHTBLUE = 14;
LIGHTGREY = 15; ON = 1; OFF = 0,

GRAPHICS (BITMAP, ON); . .

Turns bit-mapped (high resolution) graphics mode on.
GRAPHICS (BITMAP, OFF);
+Turns bit-mapped graphics off - returns to character graphics mode.
GRAPHICS (MULTICOLOUR, ON);))
Turns on mulli-cotour display mode - can be used with character graphics or bit-
mapped graphics. ‘
GRAPHICS (MULTICOLOUR, OFF);
Turns off multi-colour display mode.
GRAPHICS (EXTENDEDBACKGROUND, ON);
Turns on extended background display mode.
GRAPIHICS (EXTENDEDBACKGROUND, OFF);
Turns off extended background display mode.

43

GRATHICS (COLUMNS40, ON);

Displavs 40 columns of test (the default),
GRAVHICS (COLUMNSY0, OFF);

Displavs 38 columns of text (border contracts). Nermally used in conjunction with
stdewavs smooth serolling, :

GRATHICS (LINES25, ON)

Phsplays 25 hines of teat (the default).
GRAPHICS (LINES25, OFF);

Displays 24 lines ot test (border contracts). Normally used in conjunction with
vertical smooth serolling,

GRAPHICS (DISPLAYSCREEN, ON);

Enables normal display ot text or graphics on the screen (default condition).
GRAPHICS (DISPLAYSCREEN, OFF);

Blanks out the screen. The border colour is displaved on the whole screen. Results
in a faster execution of programs. Normally used to hide the contents of a screen
untit itis ready to be viewed.

GRAYHICS { BANKSELECT, bank);

Used to bank-select the VIC (Video Interface Chip) to a nominated 16K bank of

memory. ‘Bank’ can be {from 0 to 3, where 0 is the normal mode.

Bank Range

0 SO000-$3FFF
1 $4000-$7FI'F
2 $8000-$BFFF
3 $CO00-SFFFF

GRAPHICS (CHARACTERCOLOUR, colour);
Sets the colour for all subsequent characters to be displayed with the WRITE com-

mand. The colour definitions are given at the start of this section. Colours range
from 0 (black) to 15 dlight grey).

GRAPHICS (BORDERCOLOUR, colour);

Sets the border colour to the nominated value.
GRATHICS (BACKGROUNDCOLOURO, colour);

Sets the background colour (normal background).
GRAPHICS (BACKGROUNDCOLOURI, colour);

Sets the colour of extended background colour 1. (Used with extended background
mode).

GRAPHICS (BACKGROUNDCOLOUR2, colour);

Sets the colour of extended background colour 2. (Used with extended background
mode).

GRAPHICS { BACKGROUNDCOLOURS, colour);

Sets the colour of extended background colour 3. (Used with extended background
mode).

GRAPHICS (SPRITECOLOURO, colour);
Sets muiti-colour spnte colour 0. (Used with multi-colour sprites).
GRAPHICS (SPRITECOLQURL, colour);

Sets muiti-colour sprite colour 1. (Used with multi-colour sprites).

44

3

GR:‘\(‘: G4CS ((&('{L(‘.AB/\S(,, RELTY)(» ((((

Used to nomina.. where the character patterns for character display m{ » a.r.a.‘
to be found. Base’ should be trom (1o 7, where 2is normal upper-case ansd y,mp’n-zfsz
characters, and 3 s upper and lowers case characters, Other values could be \z;u
if vou set up vour own character memory. Bach number represents a 2K boundary

of memory, so that the ocations of character memory are as follows:

Base Lovcation of character memory

0 SOONN-SOTFF

$OS00-$OFFF

SIO00-SITTV (ROM IMAGE in BANK ¢ and 2 - default)
SISO0-STFEE (ROM IMAGL in BANK 0 amd 2)

$2X0-827FF

$2800-$2FFF

$3000-S37FF -
$3800-83FFF

NG W e R

If you are not using Bank 0 then the Bank address (refer to the BANKSELECT
description above) must be added to the above. .

GRAPHICS (VIDEOBASE, base);

Used to nominate where screen memory starts. "Base’ should be from 0 to 15,
where 1 is normal. Each number represents a 1K boundary of memory. You.wquld'
normally change the location of screen memory if you wanted to do “page flipping
- that is, animation or other special elfects by keeping text or graphics on two or
more separate areas of screen memory and flipping from one to the uthv‘r. Wariing:
this command changes the arca of screen memory that is displayed - it does not
change the area of screen memory that the WRITE command actually puts text onto.
To change this you need to use the GRAPHICS (WRITEBASE, basc) command so
that subsequent WRITEs write to the correct screen memory area.

Base Starting location
0 $0000
1 $0400
2 $0800
3 50C00
4 $1000
5 $1400
6 $1800
7 $1C00
8 $2000 ' ‘
9 $2400
10 $2800
11 $2C00
' 12 $3000
13 $£3400
14 $3800
15 $3C00

If you are not using Bank 0, Vlhvn the bank address (r'efcr to the BANKSELECT
desc}ipﬁun previously) must be added to the starting location.

e.g.
5 GRAPHICS (VIDEOBASE, 15, WRITEBASE, 15);

45

3
iy

. (

L
(" (

GRATPHICS (WRITEBASE, base);

Used to nominate which picce of screen memory that the WRITE command will
write to. ‘Base’ should be from 0 to 15, where 1is normal. Each number represents
a 1K boundary of memory, You would normally use this command in conjunction
with the GRAPHICS (VIDEOBASE, base) command (see previousty) in order to
write to a diterent area of memory then ustal when domng ‘page thpping’. Warning:
this command changes the area of screen memory that the WRITE command writes
fo - it does not change the area of screen memory that as displayed. To change
this you need to use the GRAPHICS (VIDEOBASL, base) command so that the correct
screen memory area is displayed.

SPRITE PROCESSING OVERVIEW

G-Pascal provides extensive support for sprites. Sprites (otherwise known as
‘movable object blocks’ - MOBs) are shapes of up to 24 dots across and 2t dots
down which can be placed anywhere on the screen very easily without affecting
any display underneath. You can have up to 8 sprites displaved at once - all moving
independently, having unique shapes, and coloured independently.

First, to show how easy sprtes are to program in G-Pascal, try this small program
on your Commodore 64. This program contains the essence of successful sprite prog-
ramming, namely: a) define the shape of your sprite (DEFINESPRITE); b) point a
particular sprite to the shape you have defined (POINT): o) allocate a colour to the
sprite (COLOUR); and finally: d) move it about on the screen (MOVESPRITE).

CONST COLOUR = 1; POINT = 2, YELLOW = 7,

BEGIN
DEFINESPRITE (128, SFFFFFF, $FO000F, $FO000F, $FFFFFF);
SPRITE (1, POINT, 128, 1, COLOUR, YELLOW);
MCVESPRITE (1, 50, 50, 256, 256, 180);

END.

This example illustrates how a simple 6-line program is all that is needed to define
a sprite and move it around on the screen. Having tred this example, experiment
with different colours, different coordinates in the MOVESPRITE command, and dif-
ferent shapes in the DEFINESPRITE command.

Since the sections that follow which describe the various sprite- handling com-
mands and functions may seem a bit daunting at first we will describe briefly the
purpose of the various commands and relate them to cach other. .

You define sprite shapes with DEFINESPRITE. You set up a sprite’s colour, point
it to a shape definition, activate it, expand it in the x and ¥ directions if desired,
and put it in front of or behind the background with the SPRITE command. You
posilion a stativnery sprite an the screen with POSITIONSPRITE or move a sprite
around automatically with MOVESPRITE. You can make a spnte sequence through
different shapes (to give animation cffects) with ANIMATLESPRITE. You can slop
a2 moving sprite with STOPSPRITE and start it again with STARTSPRITE. You can
tell G-Pascal to stop sprites moving if they collide with SPRITEFREEZE and check
whether this has happened with FREEZESTATUS. You can also check whether
sprites have collided with the SPRITECOLLIDE function, and whether a sprite has
Mt the backpround with the GROUMNDCOLLIDE function. You can see whether or
not a spote is moving with SPRITESTATUS, and check its coordinates on the screen
with the SPRITEX and SPRITEY functions.

46

3

0 iy vl& A
The SK’R‘T{& ¢ mmand ((. (({ .
The SURITE conunand is a general purpose command that accomplishes’ uiffer-
ent actions relating to sprites, such as controlling a sprite’s colour, whether or not
it is displayed on the screen, whether to expand it in the x or y direction and so
on. The SPRITE command aceepts arguments in gronps of three - the first is always
the sprite number, from 1 to 8. (The Commodore 64 Programmer’s Reterence Guide
_ which should be consulted tor more details about sprite charactenistics - refers
to sprites as being numbered from 0 to 7, however G-Pascal numbers sprites from
1 to 8.) The second argument to the SPRITE command is an ‘action number” from
1to 7. In a similar way to the GRAPHIUS command, we will assume that the action
numbers are detined in a CONST declaration as given below. The third argument
to the SPRITE command is the value to be passed to the action routine. For example:
SPRITE (2, colour, green, 2, expandx, on, 2, active, on);
]
CONST

COLOUR=1; POINT =2;

MULTICOLOURSPRITE = 3; EXPANDX

EXPANDY = 5; BEHINDBACKGROUND

ACTIVE = 7,

ON = },0FF = Q;

4,
6.

o

SPRITE (sprite-number, COLOUR, colour }; ‘

Sets the colour of the nominated sprite. The colour definitions are given at the
start of the GRAPHICS command section. Colours range from 0 (black) to 15 (light
grey).)

SPRITE (sprite-number, POINT, position }; :

Points the sprite to its appropriate pattern definition. This command is used to
set or change the appearance of a sprite on the screen. The pattern number must
have been previously defined with a DEFINESPRITE command or a random shape
will appear. The position ranges from ¢ to 255 where cach position number repre-
sents a 64 byte boundary in memory (in the current bank). If using bank zero then
positions less than 16 would not normally be used. Also positions in the range of
64 to 127 clash with the ROM images of the character sets {addresses $1(X0 to $2000)
and should not be used. Normally, sprite definitions would start at position 128
onwards. If using the ANIMATESPRITE command then this command is not neces-
sary, as ANIMATESPRITE overrides the position set by this command.

SPRITE (sprite-number, MULTICOLOURSPRITE, ON);

Enables this sprite to be in multi-colour mode. When using this mode the sprite
auxiliary colours are defined using the GRAPHICS command, actions
SPRITECOLOURD and SPRITECOLOURI.

SPRITE (sprite-number, MULTICOLOURSPRITE, QOFF);

Returns this sprite Lo single-colour mode. This is the default condition.

[y

. SPRITE (sprite-number, EXPANDX, ON);

Doubles the size of this sprite in the X axis (horizontally).
SPRITE (sprite-number, FXPANDX, OFF);)

Returns this sprite to its unexpended display in the X axis.
SPRITE { sprite-number, EXPANDY, ON);

Doubles the size of this sprite in the Y axis (vertically).
'SPRITE { sprite-number, EXPANDY, QFF);

Returns this sprite to its unexpanded display in the Y axis.

47

2

vead mews Rl bped Gl (wad s s
:ﬂ‘RY’(..xspri& uumbg., i)E!!g\.iIE,»\i()-\;R N ¥ OI&,, ((

Dispiavs this sprite behind any ‘bachground” da. on the screen, such as text or
hit-mapped wraphics drawings,

SPRITY { sprite-number, BEHINDBACKGROUND, OFF);

[hsplavs this sprite in front of background data.

SPRITE (sprite-number, ACTIVE, ON);

Displavs this sprite on the screen so that it can be seen. Note that the sprite may
not be visible if its display co-ordinates fall outside the screen area (in other words,
if it is in the barder area). The sprite should have been positioned on the screen
previously with the POSITIONSPRITE command. 1t you use the MOVESPRITE com-
mand (explained further) then activating the sprite with this command is unneces-
sary.

SPRITE (sprite-number, ACTIVE, OFF);
Turns this sprite oft so that it can no longer be seen on the screen. This does

not stop a sprite moving if it is moving under MOVESPRITE control - it just makes
it invisible,

GENERAL SPRITE COMMANDS

The following commands control other aspects of sprites that are not handled by
the SPRITE command, such as defining a sprite’s shape, moving from one point
on the screen to another and so on. Most of them use a sprite number as an argu-
ment, in which case a sprite number in the range 1 to 8 is supplied.

DEFINESPRITE (position, rowl, row2, row3 row21);

This is used to define the shape of a sprite. It does not use a sprite number as
shapes are independent of sprites - all sprites can use the same shape if desired,
or perhaps a given shape may not be used by any sprite at a given moment. The
"position’ nominates the location of the shape definition in memory. Each sprite defi-
nition takes 64 bytes so each ‘position” number refers to a 64 byte boundary within
the current video bank, To avoid clashes with screen memory, character memory,
and system work arcas, sprite definitions should normally start at 128 (this is ad-
dress 32000 in memory). A sprite definttion consists of up to 21 rows of sprite shape
data. Each row consists of 24 ‘bits’ (dots). As an integer in G-Iascal is three bytes
long (21 bits) each row is defined by one integer. You would normally define spntes
as a series of hex constants, but decimal constants or even variables could be used
if desired. Any unused rows at the end can be omitted - they will be assumed
to be zero (background). For example, a definition of a straight line would be:

DEFINESPRITE (128, $FFFFFF),
A simple box shape would be:
DEFINESPRITE (129, $FFFFFF, $C00003, $C00003, $FFFFFF);
48

1

o o . OIS eyt

(

PObiTlO!‘gh(TT,(‘ .-pri!c-....mbcr(, LY. (. {'{

This commana positions a sprite at lhvim)mmnu‘d x and v co-or n‘ o e
sereen. 1tis used for placing statonery spriles on the screen. H. you w‘mtl hf sy !;\‘l;
i<; move, use the MOVESTRUTE command mr?‘!‘«-.ni, ,I.f ‘.1 .sl;v‘mc is mmmg, ‘\\m‘.‘m
MOVESPRITE vontrol when you give a POSTTTIONSPRITE command then the
FOSl'l‘lONSK’Ri‘l'E will cancel the sprite’s movement.,

s on the

For example, to position sprite 5 at courdinates 100, 148 on the screen:

POSITIONSPRITE (5, 100, 140);

MOVESPRITE (sprite-number, x, ¥, x-increment, y-increment, mov_es):
This command: ‘
a) Positions the nominated sprite at the nominated x and y co-ordi.nate.
b) Turns the sprite on so that it can be seen.)
¢) Sets its SURITESTATUS to 1 to indicate that it is moving.
d) Moves it by the nominated increments ‘moves’ times. -
¢) When it has moved the nominated number of times, stops the ..sp.ntes
movement and sets its SPRITESTATUS to 0 to indicale that it has finished
moving.

The sprite should have been pointed to a sprite definition, or an ANIMAT ESX".RITE
command given for the sprite. The movement of the sprite is carried out by “inter-
rupt driven’ routines a%ynchmnnusly with your program. in othcr. wqrds, once the
sprite has been started in motion by the MOVESPRITE 'commnnd' it Yv:ll move 1{1dcs-
pendently of the program. All the program has to do is check its 5l RITESTA f’U
to find whether it has finished its planned movement or not. it is not necessary
to wait for the sprite to stop moving before doing sumluthing c’lse wﬂ’h. the spnh‘u
It can be stopped with the STOPSPRITE command whu’lh Wlll f_rec:u' it \:«'h;“rovu
it currently is on the screen. It can be hidden by inactivating it (e.g. ?vl RITE '(5.
ACTIVE, N(_));). Alternatively another MOVESPRITE command can be given which
will cancel the current one. The x-increment and y-increment are specified in 11256
of a sprite position. This is to allow very fine tuning of t'hv rate at which a sprite
moves. For example, an increment of 256 means the sprite will move exactly one
pixel per frame ta frame is about 1760 of a second). Ap increment of ‘l()Zttlm('a;;ns
the sprite will jump four pixels per frame (4 times 256 is 1024). r‘h:s wlll make the
sprite look a bit jerky. An increment of 1 will mean glmt the sprite will move o}r:e
pixel every 256 frames (about every 5 st'(‘(yx\dt.). An m(‘rv,mom of zero mtans lhc
sprite will not move in that direction at all. The ‘moves’ argument fqu-alflt-s the
number of frames that the sprite will move before stopping aut()n'?am‘f\ﬂy:' thn
the number of moves has been reached the sprite s stopped and its SPRITESTA TU.S
sel to zero so that the program knows that the sprite has stopped. Note .thai 't!us
does not mean that the sprite becomes invisible - it just stops moving,. The
maximum number of moves that can be specified is 32768. The sprite’s position at
any time can be established by the SPRITEX and SPRITEY functions.

49

(
ANIMATESPRITE (sprite-number, frame-count{ sitiond, position2 ,..);
This command allows a sprite which is in movement by a MOVESPRITE command
to sequence through a series of sprite detinitions automatically. A use for this could
be to give the appearance ot a person runmng, by having half a dozen (say) different
sprite detinitions ot a person in ditterent stages of inmng, and nominating the erder
in which they are to be displaved. ANIMATESPRITE s normally given hfore a
MOVESPRITE as the actial movement s carnied out by the MOVESPRITE com-
mand. Up to 1o positions can be nominated. A position ot zero should not be used.
See the DEFINESPRITE command tor more detads about the range of numbers that
can be chosen tor posibons. The ‘frame-count’ nominates the number of “frames’
that are to pass betore the next position in sequence is displayed. The higher the
frame-count, the more slowly the sprite will change its shape. For experimental pur-
poses we sugypest a frame-count in the range ot 5 to 10. (Each trame is about 1/60
of a second). The maximum frame count is 255. e.g.

ANIMATESPRITE (3, 5, 128, 129, 130, 131, 132);

SPRITESTATUS (sprite-number);
This function returns the status of a nominated sprite, namely whether or not
it is moving. If the status is zero then the sprite has:
a) Never been moved with a MOVESPRITE command or
by Completed a move specitied by a MOVESPRITE command or
) Been stopped with a STOPSPRITE command or
d) Been stopped by a collision under SPRITEFREEZE control,

_1f the status is 1 then the sprite is currently moving under control of 2 MOVE-
SPRITE command. SPRITESTATUS may be used as a boolean function as it will,
in cflect, return TRUE if the spnite is moving and FALSE if it is stationery. (G-Pascal
considers zero to be FALSE, and non- zero to be TRUE).

SPRITECOLLIDE

This functions returns the contents of the sprite-to-sprite collision register. This
is a hardware register in the VIC chip. If the result is zero then no sprites are collid-
ing with each other. If the result is non-zero then two or more sprites are colliding
with cach other. You may prefer to let G-Pascal automatwally check for sprite collisions
for vou and autematically stop anv sprides involved i a collision. In this case, you should
use the SPRITEFRLEZE command described further o, If you wish to establish which
sprite is involved then the result must be ANDed with the numbers in the following
table. Warming: checking the SPRITECOLLIDE status will clear the collision register
ready for the next collision. If you want to do a senies of tests on the result then
the result should be saved into an intermedsate varnable and the test carried oui
on the variable, You should ot refer to the SPRITECOLLIDE function if you are
using the SPIITEFREEZE command. In this case vou should check the FREEZES-
TATUS functivn which returns collision bits in the same way as the SPRITECOL-
LIDE function (i.e. as in the table on the next page).

50

L
(

(

O

(

: 7 - 2 i :»’ cay §
N
e Cob o bit malue (
1
2
4
8
16
32

64
128

N g

For example, to check whether sprite 1 or 5 was involved in a collision with
another sprite (or cach other):
X .= SPRITECOLLIDE;
IF(XAND 1 < > 0) OR (X AND 16 < > 0) THEN
BEGIN
(* GOT A-COLLISION *) oo .
END;

Alternatively (and more simply) you can add together the values for any sprites
you are interested in so the above example could read:

IF SPRITECOLLIDE AND 17 THEN
BEGIN

(" GOT A COLLISION *}

END;

Note that if more than two sprites are involved in collisions at one time then
you cannot tell from the SPRITECOLLIDE function which sprite is colliding with
which. (This is a hardware limitation). in that case you must work out which is
colliding with which by comparing their co-ordinates on the 'screen (by. using the
SPRITEX and SPRITEY functions for cach sprite). Of course it may not matter which
sprite has hit which, for example if sprite 1 is the player’s ship and ali other sprites
are ‘aliens’ then it would sutlice to detect that sprite 1 is involved in a collision
(i.e. IF SPRITECOLLIDE AND 1 THEN ...). '

GROUNDCOLLIDE

This functions returns the contents of the sprite-to-background collision register.
This is a hardware register in the VIC chip. If the result is zero then no sprites
are colfiding with the background. If the result is non-zero then two or more sprites
are colliding with the backpround. If you wish to establish which sprite is involved
then the result must be ANDed with the numbers in the table above (the same
values as for SPRITECOLLIDE). Warning: checking the GROUNDCOLLIDE status
will clear the collision register ready for the next collison, If you want to do a series
of tests on the result then the result should be saved into an intermediate variable
and the test carried out on the variable.

51

STOPSPRITE (sprite-number); 4 L

This command stops the movement of the nominated sprite, assuming that it has
proviously been moved by the MOVESPRITE command, It the sprite is not moving
already this command will have no ettect. STOPSPRITE will set the appropriate
SPRITESTATUYS to zero. 1t is advisable to do a STOPSPRITE before checking a
sprite’s posibon, as the sprite may Keep moving while its position is being calcu-
Lated, for example after detecting o colliston, Hoits drsir.w.! to allow the pr;"!i‘
start moving again and complete the onyinal move specitied by the MOVESPRITE
command in the tirst place, use the STARTSIRITE cormmand. Note thai sprites may
be stopped automatically if they colhde by the SPRITEFREEZE command {described
later.}

STARTSPRITE (sprite-number); '
This command reinstates the movement specified for a nominated sprite \‘Vhl(‘h
had been temporarily stopped by a STOPSURITE command. Do not give a
STARTSPRITE for a sprite which had not been moved ariginally with a MOVES-
PRITE command or the results may be unpredictable. The intended use for
STOPSPRITE and STARTSPRITE is for in a game where a number of sprites are
moving about on the screen and the program is waiting for some event to happttn,
for exampie a collision being detected, or the plaver making a ditferent move with
the jovstick. In this case the program may want to temporarily ‘freeze’ all rcleyant
spn'.cé (with STOPSI'RITE), calculate their positions, and proceed on the basis of
what the sprite positions are. Any sprites not affected (for examplle, thosc‘(hal are
not involved in a collision) can then be started again with a STARTSPRITE so they
can proceed on their planned courses. Also see the SPRITEFREEZE comma.nd for
details about how sprites can be automatically stopped by a collision. In this case
you would use STARTSURITE if you wanted sprites to continue on their courses.

SPRITEX (sprite-number); . .

SIPRITEX is a function that returns the x co-ordinate of the nominated sprite. it
is particularly useful when used in conjunction with the MOVESPRITE command,
as the prugr.im may not know where the sprite is on the screen at a given moment.
If the sprite is in motion because of a MOVESPRITE command it would be advisable
to stop it temporarily with a STOPSPRITE command or the sprite may have mm‘red
from the posttion that is returned by this function. A powerful use of the SPRITEX
and SPRITEY functions is for changing the direction of a sprite. You could use the
sprite’s current position when specifying a new MOVESPRITE command in a differ-
ent direction,

SPRITEY (sprite-number); . _ _
SPRITEY is a function that returns the y co-ordinate of the nominated sprite. It
is normally used in conjunction with SPRITEX. For example:

XPOSITION ;= SPRITEX (4);
YPOSITION := SPRITEY (4);

il

52

SPRITEFREEZE (mask

The SPRITEFREEZE command and its asseciated function, FREEZESYATUS, pro-
vide real-time control over collisions between sprites and other sprites, Fiest, some
background on the need for sech a command. .

Most arcade-style games involve objects moving around the sereen. Frequently
these objects are spaceships, aliens, myissies and bombs, (Please excuse the oleod-
thirsty nature of these descriptions), Otten the plaver ot a pome controls one object
(histher ship) and tires misstles at the other objects which are controlled by the pro-
sram.

Narmally the object of the game is to cause objedts to collide, such as a missile
with an alien, or avoid a collision, such as an aben with the player’s ship. Therefore
the subject of “collision detection’ is very important. Js important to correcBiirogis-
ter collisions between objects - not only the fact that a collision oceurred, but cor-
rectly deade which objects collided.

We will assume for our discussion that all the moving objects in question will
be implemented as sprites, and so the problem s detection of collisions between
sprites, The VIC (Video Interface Chip) inside the Commodore 64 has provision for
detection of collisions belween sprites and other sprites and returns the details of
a collision in a ‘hardware’ register, known within G-Pascal as SPRITECOLLIDE.

One methed of checking for collisions is to periodically check whether
SPRITECOLLINE is non-zero. Unfortunately, a finite time must clapse between such
checks, as the program has other things to do as well, such as scorckeeping, check-
ing for plaver iput from the joystick, keyboard or paddies, and other tasks such
as moving aliens around on the screen. Therefore st is possible for a collision to
go undetected tou long ~ in other words, by the time the program notices the colli-
sion the two spntes which collided may have separated again,

A further problem is that the VIC chip tells us which sprites have collided, but
not which sprites they have collided with. For example, on the left-hand side of
the screen a missile may have hit an alien (which we will call a “genuine’ collision),
but on the right- hand side of the screen one alien may pass in front of another
(which we will call a “pseudo’ collision). We cannot tell just by examining
SPRUFECOLLIDE the difference between a genurme and a pseudo collision - the only
way is to compare the coordinates of each sprite involved in a collision and sce
which ones overlap. Because of this necessity it is especially important to detect
a collision as soon as it occurs,

Fortunately, the SPRITEFREEZE command provides this capability. It works in
conjunction with an ‘interrupt’ routine built into G- Pascal. The way it works is
this: at the start of the game issue a SPRITEFREEZE command with a mask which
specifies which spntes may be involved in ‘genuime’ cothsions (e, the sprite which
will be the missile). This is done by adding together the mask values for all relevant
sprites. For example, if we want to detect any colbstons involving sprites 7 or 8
{with any other sprites) then the mask would be 64 + 128 = 192, S0 we would
say: SPRITEFREEZE (192);

Then the moment any collision occurs involving the nominated sprites an ‘inter-
rupt’ is generated which inonediately transfers control to a special routine inside the
G-Pascal interpreter, regardless of what else the program s doing. This routine then
places the contents of the sprite-to-sprite collision register in FREEZESTATUS, and
then inhibits any further such interrupts (this s to give the program a chance to
process the tisst one). The routine then stops all sprites that were involved in the colliston
{by effectively domg a STOPSPRITL). This means that they will stop moving so that their
coordinates (ut the time of the collision) may be examined by the progran:.

All the program has to do is periodically examine FREEZESTATUS ~ as soon as

53

it becomes non-zero the program knows that mw(\ e neminted sprites has col
lided with another sprite. Fach “bit’ in FREEZESTATUS represents a sprite (from
the table below), so that if spates 1and 8 collided, tor example, then FREEZES.
TATUS would be 129, The program would then cheek each relevant sprite’s coordi-
nates (by reterring to SPRITEN and SPRITEY) and establish whether a geouine colli-
sion has oceurred and take appropnate action. Anv sprites which were not involved
in a genuine collision can be restarted with STARTSPRITE, Onee the collision has
been processed another SPRITEFREEZE command must be issued so that the pro-
CESS CAN COMMENCe again. .

Specitying SPRITEFREEZE (0) is a special case which will inhibit any future inter-
rupts due to sprite collisions.

Sprite Mask bit value

S N U e A=
~~
N

Speeding up sprite movement

There are two ways of moving sprites rapidly around the screen. The first is to

specity a large increment in the MOVESPRITE command so that sprites will ‘jump’
a large distance cach frame. (A frame is normally 160 of a second). For example,
specilving an increment of 1024 will result in sprites moving 4 pixels per frame.
The drawback of this approach is twofold - first, the sprites look “jerky’; secondly,
a sprite which moves in large increments may jump over an obstacle that it was
supposed to collide with.

The other approach is to speed up the rate of interrupts. The reason for this is
that MOVESPRITE works by using an “interrupt routine’ in the G-Pascal interpreter
which normally gains control every Ho0 of a second. This routine is responsible
for moving sprites around. If this routine is accessed more frequently then sprites
will move faster. For example, if interrupts are processed every 17120 of a second,
then sprites will move twice as fast as usual. This will also provide smoother anima-
tion than the technique of using larger increments deseribed above. The way to
speed up interrupts is to change location SDCU5 in memory with a MEMC state-
ment. (This is the high-order byte of Timer Avin CIA 1), It normally containg $42
(decimal 66). Therefore to makes sprites move twice as fast you would say: MEMC
[SDCO5)= 33;

There are some drawbacks to speeding up sprites in this way - the first is that
the more frequent interrupts mean that less processing power is available for the
program. This becomes a greater problem the faster the interrupts. For example,
if Tucation SDCO5 was changed to 1, then the processor would spend most of its
time processing interripts and very httle ime running your program.

The other drawback to speeding up sprites is the problem of collision detection
(again). The VIC chip only detects a collision between two sprites when the collision
is actuaily drawn on the screen. If two sprites pass througgh each other very quickly,
then they may have separated before the colhsion is drawn on the screen (FVs red-
raw the screen aboul every 125 of a second). if the collision ts not drawn then
it 1s not detected. This will lead to timing-dependent bups - sometimes the collision
will be detected (because the raster line happens to be drawing that part of the
screen at the time), and sometimes it won't.

54

IR

. 8 e .
MISCELLA}<£0US GRAPHICS COMMANDS

The commands and functions described below do not specifically apply to spr;t'cs
- they pravide control over other aspeets of the Commodore 61 dxs‘pl.\\: .mq ;;r.\p n:"s
capabilitics such as making, changes to the display bvl.\wvn‘ trames (W /\.H)),Tmm:o.i\-
scrofling (SCROLL), hi- resolution {bitmapped) praphics (CLEAR ’.\nd gll(),‘ |;i»:
iioning the cursor on the screen (CURSOR), rv.uhn;;ﬂw 'p.n‘h!h.-.s" (1 A.I)‘I 1. i)grll .(l;ug
the jovstichs (JUY51 ICK), selting the clock and reading it (SETCLOCK and CL
and so on.

{

raster-number);

W’ﬁ}i‘: c(nmm.md suspvml.:; operation of your program until the raster on the sgrfcn
reaches the nominated line. (The ‘raster’ refers to the actual line currendly, ;‘m%
drawn on the TV screen). The use of this commnnd‘ is to h:mpumnly dcl.\y‘l!n.s' |‘nl;,
some change to the display until the TV is between “frames and llwrvfnrc{t u'nmaec
any flickering that might oceur if the change was made in the muk.ti (; a .rar;\is..
For example, page flipping (changing the area of memory from wludz ; ata Isi);ck-
played) waould best be carried out between lmmcs_, Also, changing .bo..c.cr !or ol
ground colour (especially if done in quick succession) looks better |(‘ it is done
tween frames. The last raster line on the screen is normally 250, so saying:

WAIT (251);

would allow changes in the visible arca to be carricd out between frames. If you
wish to change the border colour you may want to wait until about line 285 to avqnd »
the change appearing on the screen. Note thot as the TV screen is refreshed quite
quickly it is important to make the change that you want directly after the WAIT
command. If too many other instructions intervene, then the TV may have com-
menced drawing the next frame before you make your change.

The WAIT command can also be used to make a change halfway down'Qhe screen .
as in the tollowing example. However this technique should be used with cauhog
as the program is interrupted by the monitor every 1/60 of a second for keyboar
scanning, automatic sprite movement, etc. which means that you gann()t be glfar:an-
teed that the program will make a change at exactly t.he same line on the sc%:‘.n
every ime. Key in the following example and you v{ﬂl see what we mean, o is
example displays a three-colour border (sumething which is normally not possible).

const bordercolour = 11;
red = ‘ 2;
groen = 5
yollow = 7
false = 0

) begin
repeat
wait (285);
graphics (bordercolour, red);
wait {30);
graphics (bordercolour, green);
wait {180);
graphics (bordercolour, yellow);
untit faise; .
ond.

55

((ekt (be (fi o

. . . R : . (Ritastel 7
1 vou run this example vou will ser the border in { o different colours, The COC.,qr &anqm(8

o . 1 : . . . (RTLAAN »

shimmering” ettect at the edpes of vach colour is caused by the propram being inter- b";f‘-? it 0‘ \

rupted every Lol of a second by the moenitor. The shimmerning s relatively infre- éxlow _ 7f
’ quent because a lot of the time the interrupts occur when they do no harm, namely én - 1:

- *

when a colour change is not about to oceur. The shimmering could be stopped al- i .
; - . . R Gothie e s var X : integer;
together by disabling interrupts, however if tis is Jdone then no keyboard scanning

Thes place, a X SPRITE ¢ p , begin
takes place, and the MOVESPRITE command will not w ork. Sraphics (bitmap, on,

chargenbase, 4}

. . clear (yoliow, black);
torx ;= 410 180 do
plot (on, x, X);
repeat untit getkey:

end.

FLOT (colour-type, x, y);
The PLOT command plots a pointin bit-mapped (high-resolution graphics) mode.

The program should have selected bit-map mode previously (e.g. GRAPHICS (BIT-

MADP, ON); or unpredictable (and disastrous) results may occur. The x and y co-or-

dinates of the point to be plotted are given. The y co-ordinate should be in the

range 0 to 19 or a run-time error will occur. The x co-ordinate should be in the : X \ : . .

range 0 to 319 {normal mode) or 0 to 159 (multi-colour mode) or a run-time error a EEXS i(t;xm:?:isi:‘kpeﬂr(: famy:;llow l’.;,w on a black .backgmu_nd apd then wait until

will occur. The ‘colour-type’ refers to the type of plotting that will take place. In <h Y S AR « ishing. You can experiment with different colours by

) .) , changing the CLEAR command,

normal mode (not multi- colour) the colour-type can only be 0 or 1. To plot a point ¢ :

the colour-type should be 1, to erase a previously plotted point the colour-type ((-

should be 0. In multi-colour mode the colour-type can be from 0 to 3. In this case, : .

0 will show the background colour, 1 the upper 4 bits of the corresponding byte .

of screen memory, 2 the lower 4 bits of the corresponding byte of screen memory,

and 3 the corresponding colour nybble. See the Commodore 64 Reference Manual

for more details about how multi-colour mode works.

ey

* Prior to using the PLOT command the location of character memory should be set to $2000,
bitsmap mode selected, and a CLEAR command issued to blank out the high-resolution graphics
area. (High resolution plotting actually occurs in character memaory, not screen memory).
o e.g. GRAPHICS thitmap, on, chargentase, 4); CLEAR (colourl, colour2); See the example
_over the page which shows how to get ready for PLOTting.
/ . ’ .
CLEAR { foreground-colour, background-colour); _

The CLEAR command clears the area used by bit-mapped (high-resolution)
graphics prior to doing PLOT commands. WARNING: BEFORE ISSUING A CLEAR
COMMAND YOU SHOULD CHANGE THE LOCATION OF CHARACTER MEMORY
TO 4. This is because bit-mapped graphics uses an 8K block of memory for the

~data about which dot is plotted where on the screen. The 8K block of memory is
determined by the location of character memory. I character memory is less than (
4 there will be interference between the ROM images and your bit- mapping. If C ‘)
character memory is greater than 4 vou will ‘clobber’ parts of your G-I"ascal program.
Also, before ssuing a CLEAR conmand vou must e in bil-map mode, otherwise @ run-time
error will occur. When issuing the CLEAR command you specify two colours. In nor-
mal bit-mapped mode (not multi-colour) the first colour is the foreground colour
_ that is the colour of any puints that are plotted. The second colour is the back-
ground colour - that is the colour of any points that are not plotted (or plotted
as zero). In' multi-colour mode the first colour appears if you plot using a colour-type
of 1, the sccond colour appears if you plot using a colour-typt of 2. If you want
finer control of colours than that you will have to change screen memory or colour
memory yoursclf using the MEMC command. Here is a simple example illustrating
the use of bit-mapped graphics: ‘

56 57

pwa v e e gt s m— ——— L re—

SCROLL (x-offsct-pixels, y-offset-pixels); (

The SCROLL command aclieves smooth serolling by changing the hardware scroll
registers n the VIC chip. To provide full-seate smooth serolling, especially in the
sidewavs direction requires machme-code subroutines and talls bevend the scope
of G-Pascal, particularly as requirements vary from pame to game, However the
SCROLL command can be used tor some special ettects, as well as smooth serolling,
of text onto the screen asin the examsple below. T this example the procedure ‘serol-
it is calied when smooth scrolling is required at the end of a line instead of the
standard carriage return, .
const home = 147;

lines25 = 5;

false = 0;

off = false;
procadure scrollit;
var pixel : integer;

begin
il cursory = 25 then (" only if at bottom of screen *)
begin
for pixel : = 6 downto 0 do
hegin

wait (261);
scroll (0, pixel);
end;
wait (251);
scrolt (0, 7);
end;
writeln
end;
begin
“write (chr(home));
graphics (lines25, off);
cursor (25, 1),
repeat
write ("here is a scrolling demo”);
scrollit;
until false
end.

Other special effects can be achieved by using the SCROLL command to “jiggle’
the screen in the x and y directions, for example during an “explosion’. Note the
use of the WAIT command in the above example which forces the scrolling to occur
during screen frames, otherwise the scrolling may be jerky and thin black lines may
appear on the screen,

SCROLLX

The SCROLLX function returns the current amount of scrolling in the x direction,
in pixels.
SCROLLY

The SCROLLY function returns the current amount of scrolling in the y direction,
in pixels.

58

vhr

CURSOR (line, .ulumn);
The CURSOR command is used to position the cursor on the screen in preparation
for a READ or WRITE commuand. The line should be in the range 1 to 25, and the
column should be in the range 1o 40, or a run-time error will occur,
CURSORX
CURSQORX is a function which returns the current column of the cursor.,
CURSORY :

CURSORY is a function which returns the current line of the cursor,

SETCLOCK (hours, minutes, seconds, tenths);

To set the built-in time-of-day clock use the SETCLOCK conmmand. The clock
keeps accurate time to the nearest tenth of a second, regardless of what else the
program is doing. You can use the cock to keep track of the actual time of day
(in which case the operator would need to enter the time initially), or just as an
elapsed time counter, in which case you would just need to set the clock to zeroes
initially. The time is stored in 24-hour format, so to set the time at 1.30 p.m. you
would say:

SETCLOCK (13, 30, 0, 0); ' .

CLOCK (whichtime); .

The CLOCK funclion returns the contents of the time-of-day clock. "Whichtime’
is an argument specifying which part of the time is required, as foliows:

Whichtime Time returned

Tenths of a second
Seconds
Minules
Hours

W o N

In order to facilitate accurate time reading, the output of the clock is ‘frozen’ when
the hours arc read, and resumes when the tenths of a second are read. (Although
the clock itself continues to keep accurate time). Therefore you should read the
hours first and the tenths last. If you only want to time short intervals (e.g. 30
seconds) then you can ignore this feature - just read the seconds. Here is an example
of using the clock:

0;

const false =
= 1; seconds = 2;

tenths

minutes = 3; hours = 4;
: begin

setclock (4, 30, 25, 0);

repeat

cursor (25, 1);
write {clock (hours),”:",
clock {minutes),”:",
clock (seconds),”:”,
clock (tenths),” “);
until false;
end.

59

4

PAI‘)(‘“,LE { gamieport)y {

The PADDLE tunction returns the value of an anatogue paddle or analogue joys-
tick plupsed into the nommated game port (1 or 2). As two paddles plug into one
game part there are in tact two values retuened, both from 0 to 255, The way this
is done s that one of the values 1s multiplicd by 256 and added to the second value,
The example below shows how to extract both values:

const falsg = 0;
var paddlet, paddle2, result : integer;
begin .
repeat
cursor (25, 1);
result 1= paddle (1); {* rcad gameport 1 *)
paddiet : = result and $ff;
paddle2 : = result shr 8;
write (paddiel,” “ paddle2,”),
until false;

end. ’~ o—

JOYSTICK (gameport);
The JOYSTICK function returns a value corresponding to which direction a digital
joystick s pointing and whether the joystick fire button is pressed or not, or whether
or not the buttons on the paddles are depressed. “Gameport' is specified as 1 or
2, depending on which port the paddies or joystick are plugged into. It is preferable
to use port 2, as port 1is shared with the keyboard - in other words, using a joystick
plugged into port 1 makes the operating system think vou have typed a key on
the kevboard as you operate the joystick (this is undesirable in programs that use
both the joystick or paddles and the keyboard). When using a digital joystick the
values returned are as follows:

Up: 1

Down; 2

Left: 4

Right: 8

Fire button: 16
Itis possible for more than one switch inside the joystick to be activated at once
in which case the values are added together (for example pushing the joystick up
and to the right returns the value 9). Also if the “fire’ button is pressed then the
valne 16 will be added to any other values returned. Individual values can be iso-
lated by ANDing the desired value with the JOYSTICK function, For example, to
see whether the fire button on joystick 2 1s pressed, regardless of which direction
the joystick is pointing;
IF JOYSTICK (2) AND 16 THEN
H paddles are plugged into the game port then the paddle fire buttons return
values as follows: :

First paddle: 4

Second paddle: 8

-r

60

T (
G-PASCAL L JUND EFFECTS

G-Tascal provides extensive support for the S1D (Sound Interface Device) d.\ip in-
side the Commodore &b There are two main <‘mnm.n'\ds'lh.ﬂ are used for this pur-
‘Pogc — the SOUND command which controls all \‘uu‘v-md«'gwndc'ut actions (such
as overail volume, tiltering, and delavs between notes), and the VOICE command
which controls all voice- dependent actions (such as a voice's trequency, waveform,
ADSR envelope ete).

The SOUND command

The SOUND command is a general-purpose command which accomplishes 9 dif-
ferent actions. The SOUND command is supplied with pairs of argumcnts_}_gh.cre
the first is the action number and the second is the value to be passed to the action
routine. For example: SOUND (Jilterfreq. 1000, volie, 15, bandpass, on); .

For ease of comprehension, and to make your programs self- ‘dm"u‘nwnh'n;‘;,' we
strongly suggest that the action numbers be defined in a series of CONST dvhnﬁ:ons
at the start of the program, as shown below. (See the discussion under ‘The
GRAPHICS command’ for more detail about this technique). i

CONST CLEARSID = 1; FILTERFREQ = 2;
DELAY = 3; VOLUME = 4;
RESONANCE = 5; LOWPASS = 6;
BANDPASS = 7, HIGHPASS = 8;
CUTOFFVOICES = 9;

ON = 1, OFF = 0;

SOUND (CLEARSID, 0);

This command clears the SID (Sound Interface Device) chip, resetting all parame-
ters (volume, frequencies, waveforms etc.) to zero. it is primarily used to “start {rom
scratch’. G-Pascal automatically clears the SID chip at the start and the end of each
run. The second argument to the CLEARSID action is a ‘dummy’ (in other words
it is ignored) so just specily it as zero.

SOUND (FILTERFREQ, frequency);
Used to specify the cut-off frequency of the filter. The frequency ranges from 0
to 2047.

SOUND (DELAY, period);

Used to cause the propram to wait (delay) for the nominated period of time, The
period is specified as 1/100ths of a second. When a DELAY command is issued the
program is suspended (does nothing) until the nominated period elapses {although
any sprites moving, under MOVESPRITE control will continue to move). While the
program is suspended by a DELAY the RUNISTOP key will not stop the program, nor can
Debug or Trace mode be initiated. The only way to stop the program 1s by pressing RUN/
STOP and RESTORL simultaneously. ‘

The normal use tor the DELAY command is to separate notes in a musical piece
by precise intervals, however it could also be used for other special effects unrelated
to music, such as stowly displaying text on the screen.

The example below ithistrates playing voice 1 for a second:

VOICE (1, PLAY, ON);
SOUND (DELAY, 100);
VOICE (1, PLAY, OFF); ‘ :

61

SOUND (VOLUME, volume-level);

Used te set the overall volume output. Volume ranges from 0 (no sound) to 15
(full volume)

SOUND { RESONANCE, resonance-level);

Used to set the level of resonance of the filter, Resonance ranges from 0 (no reao-
nance) to 1h (tull resonance),
SOUND (LOWPASS, ON);

Directs the output of selected voices through the towpass filter, Whether a particu-
lar voice is hltered or not is controlted by the VOICE command. This is used in
conjunction with the FILTERFREQ and RESONANCE actions described above, Can
be used in comunction with BANDPASS and HIGHDPASS filtering,

SOUND { LOWPASS, OFF);

Turng off the fowpass filter,
SOUND { BANDPASS, ON);

Directs the output of selected voices through the bandpass filter, Whether a par-
ticular voice is filtered or not is controlled by the VOICE command. This is used
in conjunction with the FILTERFREQ and RESONANCE actions described above.
Can be used in conjunction with LOWPASS and HIGHPASS filtering,

SOUND { BANDFPASS, OFF);

Turns ott the bandpass filter,
SOUND (HIGHPASS, ON);

Directs the output of selected voices through the highpass filter. Whether a par-
ticular voice is filtered or not is controlled by the VOICE command. This is used
in conjunction with the FILTERFREQ and RESONANCE actions described above.
Can be used in conjunction with LOWPASS and BANDPASS filtering,

SOUND (HIGHPASS, OFF);

Turns oft the highpass filter.

SOUND (CUTOFFVOICE3, ON);

Disconnects Voice 3 from the audio path. Used if Voice 3 is only being used for
special effects such as random number generation and is not intended to be heard.
SOUND (CUTOFFVOICE3, OFF);

Reconnects Voice 3 to the audio path (the default condition).

CONST FILTERFREQ = 2; VOLUME = 4, RESONANCE = 5;
HIGHPASS = 8;ON = 1, OFF = 0; :
FREQUENCY = 1;WIDTH = 2;F
SUSTAIN = 6: PLAY = 8; PULSE =

VAR FREQ : INTEGER;

BEGIN '

SOUND (VOLUME, 15, RESONANCE, 15, HIGHPASS, ONY);
VOICE (1, FREQUENCY, 8583, 1, WIDTH, 2048,

1, FILTER, ON, 1, SUSTAIN, 15,

1, PULSE, ON, 1, PLAY,ON});

FORFREQ = 0 TO 2047 DO SOQUND (FILTERFREQ, FRFO);‘
FOR FREQ := 2047 DOWNTO ¢ DO SOUND (FILTERFREQ, FREQ);
END.

This program plays 'middle C' and then changes the filtering while the note is
playing, to demaonstrate the effects of different filter frequencies.

62

LG ¢
The VOIC%: command

The VOICE command provides control over the characteristics of each voice, 1t
is a f:t‘m‘m!-purpnsv command which accomphshes 15 difterent actions. The VOICE
command accepts arguments in proups of three - the first is always ithe voice
number, from 1 1o 3. The second is the action number and the third is the value
to be passcd to the action routine, For example: VOICE (1, frequeney, 4291, 1, triengle,
on, 1, play, on'); :

For case of comprehension, and o make vour programs self- documenting, we
strongly suggest that the action numbers be defined ina series of CONST detinitions
at the start of the program, as shown below. These would normally be added to
the definitions {or the SOUND command., (See the discussion under “The
GRAPHICS command’ tor more detail about this technique). . g

CONST FREQUENCY = 1, WIDTH = 2;
FILTER = 3; ATTACK = 4;
DECAY = 5; SUSTAIN = 6;
RELEASE = 7; PLAY = 8;
SYNC = 9; RINGMOD = 10;
TRIANGLE = 11; SAWTOOTH = 12;
PULSE = 13; NOISE = 14;
TEST = 15;
ON = 1; OFF = 0;

VOICE (voice-number, FREQUENCY, freq);

Used to define the frequency at which this voice will play. The frequency ranges.
from 0 to 65535. The trequencies of the top 12 ‘standard’ musical notes are given
below. All of the other frequencies can be derived by simply dividing the values
given by the appropriate power of 2. In other words, each time the frequency is
divided by 2 it drops an octave. A simple (and quick!) way of dividing by a power
of 2 is to use the SHift Right operator (SHR). For example, to produce Middle C
{which is 3 octaves below the value of C given below), just say: VOICE (1, FRE-
QUENCY, 34334 SHR 3); This means that any program that needs to use all octaves
of notes need only contain the 12 frequencies given below and quickly calculate
all the others at the start of the program (or as required).

[y

Note Frequency

C 34334
C sharp 36376
D 38539
D sharp 40836
E 43258
F 45830
F sharp 48555
G 51443
G sharp 54502
A 57743
Asharp 61176
B 54814

63

i . . [;? PSR ‘3 ‘
e G G
V?;(Stven aumbo, WIHDN L pulse widy

Used 1o debne the pulse width tor the pulse wh o sorm, Not needed (and ignored)
if the pulse wavelorm is not u ase. The pulse width ranges from 0 to 40895, A pulse
width of 2M8 pives o square wave (whivch bas a rich sound). A pulse width of 0
or A0S will e aninaudible sound. The turther that the pulse width goes from
2045 (hiher or lower) the “thinner’ the sound will become - it will be less rich in
harmaonics
VOICE (voice-number, FILTER, ON);

Directs this voice through the tilter, The filter characteristics, frequency and so
con are selected through the SOUND command. It no tiltering has been selected
by the SOUND command then tuming filtering on here will eftectively silence the
VOIce.

" VOICE (voice-number, FILTER, OFF); :

Bypasses the filter for this voice. The voice will be heard regardless of the filter
setlings, .

VOICE (voice-number, ATTACK, rate);

Sets the attack rate for this voice, The attack rate is the rate at which the volume
level rises when the voice is played. ranges trom 0 (2 milliseconds) to 15 (8 sec-
onds).

VOICE (voice-number, DECAY, rate);

Sets the decay rate for this voice. The decay rate is the rate at which the volume
level drops to the sustain level once the attack cycie is complete. It ranges from
0 (6 milliseconds) to 15 (24 seconds).

VOICE (voice-number, SUSTAIN, level);

Sets the sustain level for this voice, The sustain level is the volume level of this
voice once the attack and decay cycles have completed. The voice will remain at
this level until it is released.

VOICE (voice-number, RELEASE, rate);

Sets the release rate for this voice. The release rate is the rate at which the volume
fevel drops (to nil) once the note is released. It ranges from 0 (6 milliseconds) to
15 (24 seconds).

VOICE (voice-number, PLAY, ON); ‘

Plays this voice. As soon as this command is exccuted the attack cycle for this
voice will commence,

VOICL (voice-number, PLAY, OFF);

Releases this voice. As soon as this command is executed the release cycle for
this voice will commence (assuming that it was previously played).
VOICE (voice-number, SYNC, ON);

Synchronizes the fundamental frequency of the nominated voice with another
one. It the voice number is 1, it is synchronized with voice 3. If the voice number
is 2, it is synchronized with voice 1. If the voice number is 3, it is synchronized
with voice 2.

VOICE (voice-number, SYNC, OFF);

Turns otf svnchronization between this voice and another.
VOICE (voice-number, RINGMOD, ON);

Ring modulates the triangle wavetorm output of the nominated voice with another
one. For nng modulation to be audible this voice must have tnangle waveform
selected, and the other voice must have a non-zero frequency. 3 the voice number
is 1, itis ring modulated with voice 3. 1f the voice number is 2, it is ring modulated
with voice 1. If the voice number is 3, it is ring modulated with voice 2
VOICE (voice-number, RINGMOD, OFF };

Turns off nng modulation between this voice and another.
64

o0 o v

VvOICE { voied 1tmber, TRIANGLE, UN);

Selects the triangle wavelorm tor this voice,
VOICE (voice-number, TRIANGLE, OFF);

De-selects the triangte wavelorm for this voice.
VOICE (voice-number, SAWTOQOTH, ON);

Selects the smwvtooth wavelorm for this voice,
VOICE (voice-number, SAWTOOTH, OFF);

De-selects the sawtooth wavetorm tor this voice,

VOICE (voice-number, PULSE, ON);)

Selects the pulse wavetorm for this voice. The size of the pulse (pulse width)
is controlled by the WIDTH action described above,
VOICE { voice-number, PULSY, OFF);

De-sclects the pulse wavetorm for this voice.
VOICE (voice-nuimnber, NOISE, ON); ‘

Selects the noise wavetorm for this voice, Can be used to produce rumbling
sounds or ‘white noise’ depending on the frequency selecled for this voice. Alsa,
noise must be selected for voice 3 for the RANDOM funclion to correctly rt‘(l{rn

(’ ST random numbers. Noise should not be selected whilst other waveforms are ach‘vc

. ar the noise generator may Jock up’. In this case the only way to re-activate noise
is to select the TEST mode described below, :
VOICE (voice-number, NOISE, OFF);

De-selects the noise waveform for this voice.

NOTE: It is NOT recommended that more than one wavefornt be selected at once. To
change from triangle 1o pulse, for example, we recommend de-sclecling triangle first, then
selecting pulse.

VOICE (voice-number, TEST, ON);

Selects “test” mode for this voice - effectively silencing it. This action would not
normally be used. The normal way to silence a voice is to allow its ADSR envelope
to silence it, or possibly to de- select all waveforms.

VOICE (voice-number, TEST, OFF);

De-sclects ‘test” mode for this voice (the default condition).

Ty

CONST VOLUME = 4; CUTOFFVOICES3 = 9;
ON = 1;0FF = 0;
FREQUENCY = 1; SUSTAIN = 6; PLAY = §;
SAWTOOTH = 12; NOISE = 14;

VAR FREQ : INTEGER,; ,

BEGIN
SOUND (VOLUME, 15, CUTOFFVOICE3, ON);
VOICE (3, FREQUENCY, 10, 3, NOISE, ON,

: 1. SUSTAIN, 15, 1, SAWTOOTH, ON, 1, PLAY, ON);
REPEAT

VOICE (1, FREQUENCY, RANDOM * 200)

UNTIL 0;

END.

This program plays random frequencies at the rate of 10 per ?cmn_d. ‘T” C_hﬂ“?,e
the rate of frequency changes modify the ‘10 in the clause: VOICE (3, FREQUENCY,
10, to something clse.

65

L o T TR A 5 A& s 8

iR

Sound effect functions

RANDOM

The RANDOM function returns the current output of voice 3 (upper 8 bits), This
cosulls in a mumber trom 0 to 255, The character of these numbers is directly related
1o the wavetorm selected tor voice 31 trangle’ wavetorm is selected the number
will increment from 0 to 255, then decrement back to 0, 1 ‘sawtooth’ waveform
is selected the number will increment trom O to 255 then ump back to 01t "pulse’
waveform is selected the number will jump between @ atd 265, 1 moise’ waveform
is selected the numbers will vary randomiv. fnall cases, the rate at which the num-
bers chanpe is dependent on the frequency of vowe 3. The output of RANDOM
will be valid, regardless of whether or not voice Y is actually gated (phiving). In
other words, you do not have to say: VOICE (3, PLAY, ON) for RANDONM to con-
tain valid data.

The most common use of this function is as a random number generator (hence
its name) however by selecting, say, a triangle wavetorm and using the result to
modify the trequency of another voice special eftects such as a ‘siren’ sound could

be achieved., /{

If using RANDOM for random numbers the minimum ‘conditioning’ required for
their generation is:

VOICE (3, NOISE, ON, 3, FREQUENCY, 10000),

I the noise is not intended to be heard by the user then SOUND
(CUTOFFVOICE], ON) could be selected as described under the SOUND command
{alternatively just leave the overall volume at zero). However if you are writing a
game with sound effects and random numbers then use voice 3 for noise (such as
explosions, footsteps ctc.) which will automatically previde random numbers
through RANDOM at the same time.

The only caution in using RANDOM for random numbers is that a high enough
frequency is selected. The random numbers change at the nominated frequency,
so if a frequency of 1 is chosen, for example, the random numbers would only
change once a second.

ENVELOPE

ENVELOPE returns the output of the voice 3 envelope generator (ADSR en-
velope). This will return a number from 0 to 255 reflecting the current volume of
voice 3 as controfled by the Attack, Decav, Sustain and Release {ADSR) parameters.
Voice 3 must be played in order to trigger the ADSR cycle. The output from EN-
VELOPE can be added to the filter frequency or fundamental frequency of other
voices for special effects. 0

CONST FREQUENCY = 1; NOISE = 14;0ON = 1{;
BEGIN
VOICE (3, NOISE, ON, 3, FREQUENCY, 50000},
REPEAT '
WRITELN (RANDOM + RANDOM SHL 8)
UNTIL O;
END.

This program generates random numbers in the range 0 to 65535 and displays
them on the screen,

66

| [
INDEPENDL.AT MODULES

A powerful feature of G-Pascal is the ability to compile procedures and functions
independentiv and “Hink” them together at am time. This is made particularly casy
because the P-codes generated by the compiler are completely “refocatable’. That
is to say that they may be run at any address, regardless of where they were com-
piled, without change.

Advantages of independent modules
1. As P-codes are typically only a half to a third of the size of the corres-
ponding source code, larger programs may be run if they are compiled in
‘picces’. -—

2. Groups of logically related subroutines may be placed in an indepen-
dent module and then used by a number of other programs - for example
you could put all your ‘file handling” routines in an independent module,
Then if you needed to change the way you access files you only have to
change ane module rather than perhaps dozens of programs,

3. You can implement an ‘overlay’ structure - in other words, various
difierent modules can be loaded to the same address (not all at the same
time of course!) thereby saving memory space. For example, if you are im-
plementing a big adventure game you might have the first half of the game
in module ‘A" which loads at address $1000, and then at the appropriate
time load module ‘B’ to address $1000 instead.

How to implement independent modules

1. Compile the module or modules and save them to disk or cassette using the
<O>bject option in the files menu.

2. Compile the ‘main’ program and include ‘dummy’ procedure deciarations for
the independent modules in the form:

PROCEDURE EXTRAROUTINES (ARG1, ARG2, ARG3). $1003;

This tells the compiler that the named procedure will be loaded as an independent
module, and to execute it at address $1003.

3. The main program should load the module’s P-codes before invoking the mod-
ule. Alternatively, the independent modules could be compiled at the required ad-
dress directly by using the %A compiler directive. The module should be loaded
or compiled at an address three byles below where it is to be executed at. The reason
for this is that a G-Pascal program always starts with a 3-byte ‘jump’ instruction
to the ‘main line’ - that is, the first instruction to be executed. Therefore the first
procedure in the program starts 3 bytes in from the actual address at which the pro-
gram is loaded. The examples following should clarify this point.

Multiple procedures in one module

act/:;lpr:—,cg-hi”%- 'cam (bv Tﬂ"."i('d withip proccduro:s a ‘'module’ can consist of many

o 2 E) ocedurg f,'<‘)r .:smc_ltmns. In this case a typical approach is to supply at least
¢ argument which is a ‘procedure number’ which would be used in a CASE state-

ment to direct control to the correct sub-procedure.) ‘

67

B
f:‘nﬁﬁs

((g.“(‘ ((¢ O
EXANIPLES OF INDEVENDLENT (ODULES Example 2

Now we'll Hiustrate some more complicated aspeets of independent moditles,

We will illustrate the use of independent modades with a simple example, and namely:
then a more complicated example which will make greater use of the potential of
these modules. :

Example 1

1. ‘Common’ data areas.
2. Nested procedures,
3. One mdependent module calling another.,
Maodule 1
VAR A, B, C, D INTEGER;

The independent module FRED : ARBAY [50] OF CHAR,;
(* %A $1000 %) n PROCEDURE MODULE1;
PROCEDURE PLAYSOMEMUSIC (PITCH, DURATION); BEGIN ULET:

; ' CONST DELAY = 3; VOLUME = 4, FREQUENCY = 1t;

* This module has F ¢
SUSTAIN = 6: PLAY = 8; THIANGLE = 11; (* This modylo has no arguments °)

| A= B; (* codo f ' -~

: O~ N orF = 61 s, (* code for module 1) ‘

: BEGIN ' BEGIN END. (* dummy mainiine *

' ' . y mainfine *)

: \slgté!\élj(fvgégggélls&(, PITCH, This module would be compiled and the object saved to disk or cassette using

1, TRIANGLE, ON, the (O)bject option in the Files Menu as “MOD1,0Bj”.

1. SUSTAIN, 15,
1. PLAY, ON):) .
- SOUND (DELAY, DURATION); , Module 2
VOICE (1, PLAY, OFF)
EnD: VAR A, B, C. D : INTEGER:
FRED : ARRAY [50] OF CHAR:

£

BEGIN (" starl of ‘main line’ - this will not be executed *)

END. PROCEDURE MODULE1; $1003; (* refer to first module *)
) PROCEDURE MODULEZ2 (ACTION, ARG, A ;
! The above module is compiled first — the %A option automatically puts it at loca- PROCEDURE FIHSTACT!E)N' ©1. ARG, ARGI:
! tion $1000. BEGIN , '
. MODULET; (* call other independeant module *)
A:=B-C
END;
The *Main Program’ PROCEDURE SECONDACTION (X, Y);
CONST FALSE = 0; BEGIN
‘ D:=X"Y
VAR, J : INTEGER; END;
BEGIN (* actual start of module 2 code)

PROCEDURE PLAYSOMEMUSIC (ARG1, ARG2); $1003; CASE ACTION OF (* choose a sub-module *)
; BEGIN 1 FIRSTACTION;

J= 10 N 2 : SECONDACTION (ARG1, ARG2) (* pass paramelers ‘) '

REPEAT - END, (* of case *) '

FOR1:= 1TO10DO : v END; (* of module 2 procedure *)
PLAYSOMEMUSIC (1 * 1000, J); : . . BEGIN END. (* dummy mainline *)
FOR1:~ 10 DOWNTO 1 DO PLAYSOMEMUSIC (1 * 1000, J) This module would be compiled and the object saved to disk or cassette using
UNTIL FALSE: the (O)bject option in the Files Menu as “MOD2.0BJ”,
END.

(You may want to try this example yourself. As well as illustrating independent
modules it plays quite an interesting tune.)
‘The above illustrates a couple of important points:
1. The module was compiled 3 bytes below where it was called.
2. The "dummy’ declaration for the module in the main program had the
same number of arguments (2) as the actual declaration in the module.

68 69

Main program

CONST DISK = 8; LOADFLAG =0;.

VAR A, B, C. D : INTEGER;

FRED : ARRAY [50] OF CHAR;

PROCEDUNE MODULEY; §1003; (* refer lo modulo 17)

PROCEDURE MODULE2 (ACTION, ARG1, ARG2, ARGJ); $2003;

(" refor to modulo 2)

BEGIN {* start of actual program)
LOAD (DISK, 51000, LOADFLAG, "MOD1.0BJ™):
LOAD (DISK, $2000, LOADFLAG, "MOD2.08J"): (* load modules *)
MODULE1: (* invoke module 1°)
MODULEZ2 (1, 5, 6, 0) (* invoke module 2 *)

END. (* of program °)

2

This illustrates one module calling another, When using modules it is obviously
important to toad them at the address that vou have tald the compiler that you
scommon’ (global) data provided that the same data declarations occter cach module
and the calling program. This works because the compiler allocates all variables as
‘stack relative’ - in other words their actual addresses in memory are not known
until it knows where the run-time stack is going to be. Therefore identical data decla-
rations in ditferent modules will result in the compiler allocating identical stack rela-
tive addresses within vach module - and the modules can then each refer to each
other's data arcas. lf a particular module needs more ‘work areas’ then these should
be allocated after the procedure declaration (local data) and these will only be in
force during the invocation of the procedure,

are poing to (minus 3) otherwise strange restiits may occur. Modules may share f

70

e v e B e A bR MO S T O [T . e [L R R et

Ha(h Tﬂ/\(; S\ (()i(:) li(1,

This section describes the tormat of G-Paseal souree files for those users that wish
to use them with other editors or sword processors. Fach source hne is stored in
SOqUEnCe, and ends with o carriape return {hes ODY. Line numbers are not stored
in the program = these are automatically generated by the Fditor and Compiler when
listing the propgram. The end of the program is indicated by oa el following the
last carriage return. In other words, the last o bytes of the program are hex 0D,

Occurrences 0f 1o 07 ore spaces aie converted toa speaal code. This consists
of a *dle’ character thex 1t tollowed by a one- byte space count with the high-order
hit set. The high order bit s set so that the editor does not gontuse 1) spaces with
a carriage return. For example, 4 vonsectlive spaces would be stored as hex 1084,
{hex 10 followed by hex 04+ hex 80),

All reserved words (e, BEGIN, END, DEEFINESPRITE, CURSOR etc.) are ‘to-
kenized' as they are keved in and stored as a single byte in order to safTrspace.
Also, the system assumes that all reserved words are followed by a space, so0 the
space is not stored and a space is always displayed after a reserved word, This
makes it impossible to have punctuation direetly tollowing a reserved word. (You
may key in the punctuation directly after the word, for example: END; however
it will be displaved as END). '

This tokenization means that PROCEDURE occupics one byte instead of 10 bytes
(allowing for the space that tollows the word PROCEDURE). If vou wish to ‘de-to-
kenize’ your program (perhaps to use with an external word processor or editor)
then run the following program which reveals the token equivalents (in decimal)
of cach reserved word:

var word : integer;
begin
memc [$49 } := 0; {* expand reserved words)
for word := $81 to $FF do
it (word < $B0) or (word > $DE) then
writeln ("equivalent ot *, word,
“is ", chr{word))
end.

Any user-written detokenization program should make allowance for the fact that
tokenization is not done within quotes as the characters used for reserved words
are in some cases the same as the graphics symbols. For example, try entering a
line in the Editor by pressing the ‘Commodore” key and ‘T' simultaneously. It will
v:ilsp\ay a graphics character (thin horizontal bar). Now list that line and the word
"cursor’ will appear. Now repeat the process, this time putting the graphics symbol
inside quotes. This time it will list correctly. This demonstrates that the internal
listing routines display the same character differently depending on whether or not
it is inside quotes. x

["rolgrams that have been entered using an independent editor {not the G-Pascal
b\.lllt-m Editor) will successfully compile as the G-Pascal compiler will recagmize cither its
miernally tokenized reserved words or the same words spelt m full Programs containing
r&:servcd words which are not tokenized will be automatically tokenized (and multi-
ple spaces reduced to the 2-byte code) as soon as a ‘Replace” command is done
in the Editor which has one ot more spaces in its replacement stnng. In other words,
to torce {gll1l(>kur1i7,aliun of a program just enter:

This process takes about one second per 100 lines of program code.

-l’(,t(,x’ |

71

OGN
Idiosyncrasies of tokenization

Tokenization of the source code has the benefits of increased compile speed, re-
duced program size and consequently faster loading and saving trom disk or cas-
colte. Tt also has the advantage that spaces can treely be used within the program
to aid readability as 10 spaces Like up nomore room than 2 spaces. However under
cortam (rare) circumstances the tohenization process can cause strange behaviour
by the Fditor which could fead to contusion. These are desenbed below L

T e A space will alivaus be displaved atter a reserved word,

@ Reserved words will abways be displayed in lower case, regardless of how
they are entered. :

@ As reserved words are stored internally as one byvte, the Find and Replace
commands in the Fditor cmnot Jocate part of @ reserivd word. For example,
vou cannat find the ‘BEG in BEGIN, or TROC in PROCEDURE. In order
to correctly locate recorved words, thev mast be spett in full. To obtain a
list of all reserved words run the small program described in the previous
section,

¢ It is quite permissable to focate part of a pon-reserved word, unless that part

’ is itself a reserved word., In other words, attempting to locate “FRO will sue
cessfully locate the word “FRED, however trying to locate “TQ" will not locate
the word ‘TOOL as “TO' is a reserved word,

e As multiple spaces are stored as a 2-bvte code, the Find and Replace com-
mands can only mateh on the exact number of spaces (remembering that the
space which is displaved following a reserved word 1s not actually stored
in the file and should not be counted).

& A line containing mismatched quote symbols mav display strangely. For ex-
ample, type in the following line as fine 1. BEGIN END REPEAT WHILE
FOR DO. Then use the Replace command to change BEGIN to a quote sym-
bol: R 1.BEGIN.".

The reserved words will have been changed to inverse letters! Now get
rid of the quote symbol by saying: R 1.7
The reserved words will re-appear!

72

§)

.

O

R

CONVER.ING FROM OTHER PASCALS (

As G-Paseal is 0 subsct of Pascal, not all of the constructs from "full’” Pascel are
availabile, however most of them are either already in G-Pascal or canbe simatated”,
This section contains hints for converting published programs so that they wil work
in G-Pascal
PROGRANM statement

The first waord i a foll Pascal programis:

PROGRAM programnamao (input, output};

G-Pascal does nut need this, so omit it

Type BOQOLEAN
G-Pascal does not provide a BOOLEAN type, however if you declare: s
CONST TRUE == 1, FALSE = 0;
and change the word BOOLEAN to CHAR where it appears then Booleans will work
as normal. 1 the result of a conditional test is zero G- Pascal considers it to be
false, otherwise G-Pascal considers it to be true.
TYPE declaration
G-Pascal does not support the TYPE declaration. However, where full Pascal
might say: '
TYPE COLOUR = (RED, GREEN, BLUE);
VAR FRED : COLOUR;
BEGIN FRED := GREEN END.

just say in G-Pascal:

CONST RED = 0; GREEN = 1; BLUE = 2;
VAR FRED : INTEGER,;
BEGIN FRED := GREEN END.

which will have the same effect.
Quotes
G-Pascal expects (') as its string delimiter rather than (') which is different from
most other Pascals. '
Type REAL
There is no REAL (floating point) type in G-Pascal. However as INTEGERs are

3 bytes and therefore provide at least 6-digit accuracy then these suffice for most
applications.

For example, a program that deals in dollars and cents could hold money amounts

;pklcrr;]ally as cents, and then print them with the decimal point in the right place
ike this: '

write (AMOUNT / 100,".")
it AMOUNT mod 100 < 10 then write (“0");
writeln (AMOUNT mod 100);

Passing_ procedure and function arguments by address ’
By using the ADDRESS construct with the MEM construct it is possible to pass

parameters to a procedure or function by ‘address’ (which is not directly supported
by G-Pascal). y ysupe

73

T S o s hoe
] B
Ao Bt g e U ik e ke e i AT e MRS i e T

g'm CXIMPh. .
VAR, J, K: INTEGER;

PROCEDURE ADD (A, B, C);
BEGIN

MEMIC]:= A + B;

END

BEGIN

li=2;d:=3;

ADD (1, J, ADDRESS(K)).
WRITELN ("TANSWER WAS: " K)
END.

" As the example shows, although all parameters are passed by ‘value’, in the case
of ‘K’ the value is, in fact, the address of ‘K’ {by using the word ADDRESS), so
that the ADD procedure, by using the supplied address in a MEM statement, can
roturn its result to the desired variable.

READLN, WRITELN etce,

Gee sections on READ, WRITE and WRITELN, under the section “Beginner’s
Guide to Pascal’ for G-Pascal formats.
LABEL, GOTO

Not supported. Use other programming techniques.

DEBUGGING

A ‘bug’ is where a program compiles without errors, but when run does one of

“the following:

a) Uroduces incorrect resulls;
b) Aborts with an error message (e.g. Divide by zero);
¢) Goes into a ‘loop” and appears to do nothing;
d) ‘Crashes’, possibly destroving itself and G-Pascal.
Below are sugpested methods of dealing with each, however the important thing

. about debugping is to keep an open mind about possible problems - ‘expect the

unexpected’ 50 to speak. Try to refrain from giving up and blaming G-Paseal if your
prog’r.nn does not work — G- Pascal has been extensively tested with many large
and small programs. The likelihood of your uncovenng some obscure bug in G-F'as-
cal is pretty remote.
Programs that produce incorrect results

If you can’t work out why your program is not working exactly as designed try
displaying debugging information at pertinent spots in your program. You could

_ make the displays conditional on a “debugping flag’ at the start uf the program so

you can easily enable or disable this debugging information by changing one line.
e.g.

CONST TRUE = 1; FALSE = 0;
DEBUGGING = TRUE;

{*... and further on in the program)
IF DEBUGGING THEN WRITELN ("J5 1S NOW: ™, J5};

By making ‘DEBUGGING’ false then your debugging WRITEs would be suppres-
sed.

74

S R TR ot

e s e VT S g S

L Y

v’

Prograe$ tha -\ Lanen . mess(. e {
All aborts (inch g prossmyg, RUNSTOPY display the Pecode address Avich
chows where the program was when it aborted. By reterring to the PP-code addresses
displayed by the Compiler you can casily tocate the problem. Note that atter an
abort Glascal wails for you to pross o kéy before returning to the Main Menu this
is to give you a chancee 1o read the error message.
Programs that loop or hang and appear to do nothing
If you want to know what part of your program is evecuting press COMMO-

DOREM (T ~ Trace) and a Frace will start, Press COMMODOREN (N = Normal)
to cancel the Trave. Whilst tracing you will see something hike the following:

(057A) 3C 7D 09 3B

(0970) 3B 0D 00 01

{£980) 08 81 32 00

(0981) 813200 F4

(0902) 3200 F4 FF

{0986) E4 2A 2C 00

(0987) 2A 2C 00 F4

(0988) 2C 00 F4 FF

e

The addresses. in brackets are the P-code addresses (which you can relate to the
addresses in brackets which are listed if you get a listing during a Compile). By
doing this you can find which procedure or group of instructions are being executed
which shouid help track down the cause of the loop. The data to the right of the
P-code addresses are the actual P-codes. Not alt P-codes are 4 bytes long in which
case disregard some of them. For an explanation of the meaning of the P-codes
see ‘Meanings of '-codes’. :

Programs that ‘crash’
There are two likely causes of a program going completely berserk:
1) An array subscript being, too big or too small; .
2) Pokeing {with the MEM or MEMC arrays) into a piece of memory that
vou shouldn’t have.

If a program is behaving strangely check that all subscripts cannot exceed their de-
clared array bounds.
Other debugging techniques
As a last resort you can select ‘Debug’ mode by cither selecting 'Debug’ from
thc Main Menu or pressing COMMODORE/D (D Debug) while the program is run-
ning.
Using ‘Debug’ mode
Debug mode displays information like the following:)
{0981) 81 32 00 F4
Stack: 95F2 = 04 01 00 00 14 00 00 05
Base: 95FF = 05 04 04 05 05 04 '
(0982) 32 00 F4 FF
Stack: 95EF = 01 00 00 04 01 00 00 14
Base: 95FF = 0504 04 05 05 04
(0986} £4 2A 2C 00
Stack: 95F2 = 04 01 00 00 14 G0 00 €5
Base: 95FF = 0504 04 050504

75

i

A

Y

The debug information appears in groups of three{ s The first ine is identical
to the informaton displaved during 8 Trace and consists of the Pecode address fol-
fowed by the actual Pecode being executed and its operands. The next line {"Stack:")
shows the top 8 bytes on the stack - this would trequentiy be the data being worked
on - for example it you said 244 in vour program veu would see the 27 on the
top of the stack (fetimost 3 bvtes) in e orders 02 00 00 and then the 4 woeald
be pushed onto the stack so that vou would then see; G4 00 00 02 (K G0 and then
the add’ P-code would be processed, leaving ‘67 on the top of the stack, The third
fine (' Base:’) shows the ‘stack frame hinkage data” namely:

.

a) Procedure return address (feftmost 2 bytes).

B Stack frame dynamic link (middie 2 bytes) - this is the address of the
stack frame of the last activated procedure or function (prior to the current
one).

¢} Stack frame static Hnk (rightmost 2 bytes) - this is the address of the
stack frame of the last procedure in the lexical order of the program.

Note that the stack and base linkage data is that before the displayed peode is
executed.

How to start Debug or Trace from within your program

To start debug mode from within the program:

CMEMC [331]) := 1, MEMC {$67] := 1;

To start trace mode from within the program:
MEMC {$31] := 1; MEMC [$67] : = $80;

To stop debug or trace from within the program:

MEMC {$67] : = 0;

CHANNEL NUMBERS
G-Pascal assumes that the disk drive responds to device number 8 and the printer
to device number 4. 1f your disk or printer hardware responds to different device
numbers then enter, compile and run the following program prior to attempting to
access the disk or printer: :
BEGIN - @
MEMC [38010) := 6; (this is the printer device number °)
MEMC [$8011] := 9; (this is the disk device number *)
END.
The actual numbers used in the assignment statements above wili depend
on what your printer and disk channels are. Obviously if only ene device number
is wrong then you need only enter the appropriate assignment statement.

it

76

W . P - « U

D e

=

MEMORY [XI§ y (

This section deseribes the vatious memory addresses used by the G-lascal system.
1t is particularty important to be aware of memory allovation when:

Using DEFINESPRIFE to place sprite shape definitions in memory.

Controbing the location ot P-codes with the %A compiler directive.

Using bit-mapped graphics.

Doing page-thpping - that is, using more thin one area of memory for screen
memory. .

e Dlacing machine-code subroutines in memory.

e Compiling independent modules.

SO000 to S03ET = used tor “zero page’ system and compiler waork-areas, sysha and
compile-time stack, other system variables and system jump vedtors. This arca
should not be used except by experienced machine-language programmers who are
aware af the ramitications of changing these locations.

$0400 to $0701 - used tor the TK ‘primary” screen memory area. This area is in con-

D D @ 8

“ gtant use by the compiler tor displaying the text that appears on the TV screen.

While a program is runmng the WRITE statement normally causes text to appear
in this area. ’
$0800 to SOFFF ~ spare (not used by G-Pascal). This 2K area is available for machine-
code subroutines, other screen memory pages (numbers 2 and 3, user-defined char-
acter sets (character memory base number 1), DEFINESPRITE statements (pointers
32 to 63), or P- codes (by using the %A $800 compiler directive). Of course, it cannot
be used for all of these purposes at the same time. The addresses occupied by shapes
defined with DEFINESPRITE are the pointer number multiplied by 64 - e g. pointer
32 is address $800 (32 * 64 = 2048 which is $800 in hexadecimal).

$1000 to $1FFF - spare (not used by G-Pascal). This 4K arca is available for machine-
code subroutines or P-codes. Because the hardware 'maps’ the character gencrator
images into this arca during the video display phase of the system clock it is not
suitable for DEFINESPRITE images, screen memory areas, or bit- mapped graphics
arcas. .

$2000 to $3FFF ~ spare (not used by G-Pascal). This 8K area is available for machine-
code subroutines, P-codes, DEFINESPRITE statements (pointers 128 to 255), screen
memory pages (numbers 8 to 15), bit-mapped graphics (by sclting character memory
base number to 4), or user-defined character sets (character memory base numbers
4 to 7). Again, this arca cannot be used for all these purpuses at once, however
it may be possible, for example, to have some addresses allocated to sprite shapes,
some for P-co” s, and some for extra screen memory pages, provided care is taken
that these areas do not overlap. :

34000 to $7FFF — this 16K arva is used by G-Pascal to store the source program (i.e.
the G-Pascat text as it is typed in or loaded from disk or cassette). Unless the %A
compiler directive is used this area 1s also used to store the P-codes during the com-
pilation process - they are placed directly after the end_ of the source program.
$8000 to SBIFE = this 16K area used lo hold the G-Pascal compiter itsetf and is not
available for other purposes.

$COCO to SCETE ~ this 4K area is used for the compiler’s symbol table (during compi-
lation) and the G-Pascal run-time stack (storage area for variable data) during run-
ning. During running the “top” 304 bytes are used for spntc-rolah'd functions
(MOVESPRITE, ANIMATESPRITE and so on) thus leaving 3792 bytes for the run-
time stack. The run-time stack actually starts at $CEDO (at time of publication) and
grows downwards.

e

SO0 1o $DTFF = this 2K area is used for 1O fmu‘tinn(;\ /IC chip and SID chip),
£19800 to RDBIF — this 1K area is used for Colour RAM nibbles. 1t is normally up-
dated by writing to the screen,

$DCO0 o SDFTT = this 1K area is used for VO functions (CIA chips and future expan-
sion).

SO to $TFFF — this 8K area is used for the Kernal ROM (that is, the Commodore
&1 vperating systemy which handles sereen editing, loading and saving files, power
up activities and so on).

-MACHINE LANGU/\GE SUBROUTINES

The novice user should skip this section.
Machine-language subroutines may be called by:
CALL (address)
Remember that hexadecimal constants must be preceded by a '8
It is possible to set up the A, X, and Y registers and the condition codes prior

to the call by loading certain reserved memory locations (see table below). G-Pascal@ys

loads the contents of those locations into the appropriate registers prioe to calling ¥
the subroutine with a JSR instruction and places the contents of the A, X, Y registers
and condition codes into those locations after the subroutine has exited. The
machine-code subroutine should end with an RTS instruction,
Care should be laken not to set either the ‘decimal’ flag or the ‘interrupt inhibit’
flag in the condition codes register or G-Pascal will not function correcty.
The example beiow sends the letter A’ to logical device 4.
const AREG = $2B2; XREG = $2B3,
YREG = $2B4; CCODES = $2Bf1,
CHKOUT = $FFCS; CHROUT = $FFD2;
begin
memc | XREG | := 4;
call (CHKOUT);
memc [AREG] ;= ‘A
) call (CHROQUT),
end.

Warning

The subroutine (if you write one yourself) should not change addresses used by
G-Pascal or unpredictable results will occur. The addresses listed in the table below
are used by the G-Pascal interpreter to maintain important information about the
state of a program as it runs and should not be changed Gapart from the 4 addresses

used by the CALL instruction). Other addresses which are not used by the Kernagd) &

may be used by machine-code programs (such as the ones allocated to Basic) how-
ever they should be reparded as ‘scratch’ areas, subject to use by various G-P’ascal
instructions. (In other words, they may change from CALL to CALL). For perma-
nent work areas tor machine code programs refer to the section entitled "‘Memory
Map’ and choose a suitable area of memory from that,
Addresses of interest to machine-fanguage programmers:

Address Meaniny

$2B2 A-repister save/restore for CALL instruction

$2133 - X-repister save/restore for CALL instruction

5284 Y-register savefrestore for CALL instruction

$281 Condition codes savelsestore for CALL instruction

78

S S B

fd F«t(.x. «adddress of machine code called by CALL
SOR0C Address Lo return to in event of error
$20:827 Address of nest P-code to execute
$28:429 Address of start of pmy"r.un (tirst P-code)
$31 Dasplay P-code flag (8 = no, 1 = yes) - used in conjunction with
debug tlay (567) — to start a trace pmy,.\mm.ﬁica!ly mave 1 to $31 and $80
to $67. (Lo, meme [$31] 00 1 memce {$07] = $80,)
$45/%40 Current stack trame base
$49 Program runming tlay (0 = compiling, 12 = running)
$53 Vahd compile flag (00 = no. 1 = valid)
547855 Address to transter to if RUN/STOD pressed
$56/657 First free Jocation past -codes. (End of program + 1). Can
be used tor temporary data or machine code subroutines. -
$67 Debupping flag (0 = none, 80 = trace, 1 = debug) (see description
for $31 above)
$6C “Invalid’ flag (returned by INVALID function)
$61) Collision mask (sct up by SPRITEFREEZE)
$6E Collision regisier (returned by FREEZESTATUS)
$C3/5C4 Current runtime stack top (last used location)
$2C5/32C6 Address of current P-code
$2F8/$2F9 Address of Kernal interrupt routine. G-Pascal’s interrupt proces-
sor translers to here after processing MOVESPRITE and ANIMATESPRITE
commands.
$2FA to $2FC Used by Interrupt routines

All 2-byte locations which contain an address hold it in the normal 6502 format of low-order

byte first, then high-order byle.

MEANINGS OF P-CODES

Here are what the P-codes mean. You will not normatly need this information.
Many P-codes do not have any operands - that is, they are just a single byte. In
this case their operands are on the top of the stack, wherever that is at the time.
For example, ‘ADIY adds together the two top integers on the stack, replacing them
with the result of the addition, Some P-codes (such as Load and Store) are followed
by the frame displacement and stack relative address of the data to be loaded or
stored (in other words, the frame-relative address of the variable). ‘Jumping’ P-codes
are followed by a relative address of the location to jump to. WRITE (string), LOAD
and SAVE P-codes are followed by a string length and then the string itself.
Hex P-code Function :

00 Load constant

01 DEFINESPRITE

02 Negate (sp)

03 PLOT

O Add (sp)to (sp~ 1)

05 PLOT (same as 'LOT) (not currently used)
06 Subtract (sp) from (sp - 1)
07 GETKEY

08 Multiply (sp) * (sp~ 1)
g‘j\ a EAR
ivide (sp - 1)/ (sp)

0BMOD (sp-1) MOS (sp)

79

0C Address of integer
00 Address of character
OF Address of inteper array
UF Address of char array
10 Test (sp - U = (sp)
! Step run - (endd of program)
12 Test {sp - B <O {sp)
13 Cursor pesition
14 Test (sp - D <{sp)
15 Not implemented

e Test (sp - 1) >~ (sp)

i7 Inpart hex number

18 Test (sp -~ 1) > {sp)

19 Test (sp -~ 1) <= (sp)

1A OR {sp -~ 1} with (sp)

1B AND {sp - 1) with (sp)

1C Input number

10 Inpuf character

1E Output number

¥ Qutput a character

20 Not (sp) (Reverse true/false)
21 Output hex number

22 Shift left (sp) bits

23 Quiput string,

24 Shift right (sp) bitg

25 Input string into array

26 Increment {sp) by |

27 Relative Procedure/function call
28 Decrement (sp) by 1

29 Procedure/function return
2A Copy spyto (sp + 1)

28 Call absolute address

2C Load integer onto stack
2D Load character onto stack
2k Load absolute address integer
2F Load absolute address character
30 Load integer indexed

31 Load character indexed

32 Store integer

33 Store character

34 Store integer absolute

35 Store character absolute -

/'.R** N

36 Store integer indesed

A7 Store character indexed

38 Absotute Procedure/function call
AWAIT

A XOR foxctusive or) {sp - 1) with {sp)
A increment stack pointer

M fump unconditionally

AR Jumpif (sp) 2ero

B Jumip if (sp) not zero

3FSPRITE

SO POSTTIONSPRITE,

A VOICE

42 GRATHICS

43 SOUND

41 SETCLOCK

45 SCROLI.

46 SPRITECOLLIDE

47 GROUNDCOLLIDE Q
48 CURSORX
49 CURSORY

4A CLOCK

48 PADDLE

4C SPRITEX

41 JOYSTICK

4E SPRITEY

4F RANDOM

50 ENVELOPE

51 SCROLLX

52 SCROLLY

53 SPRITESTATUS
54 MOVIESPRITE

55 STOPSPRITE

56 STARTSPRITE

57 ANIMATESPRITE
58 ABS (take absolute value of (sp))
59 INVALID

5A LOAD

5B SAVE

5C SPRITEFREEZE
5D FREEZESTATUS

SE Qutput a carriage return @‘

80 to ¥F: Load short literal: P-code - 380 e.g. 80 (hex) means load 0, 81 (hexj means

load 1 etc.

HOW TO LOAD G-PASCAL FROM DISK

Ciree vett have turned on the power tovous Jink dnyeand Commodore od) inserd
the Ci-Paseal diskette atud by poe

1OAD "GPASCALTS

CoPaseal will take about 45 cevonds to Tead Whenat has loaded tepe

FUN

Ay

G-Pascal will o disploy s "NMan Aenn as desorbed m the Manual,
1 the event of a doad error there s g secomd, dentical, copy ot Co-Tascal on the
dinkette callod “G-PASCAT BACKUETT

TN O the disk s dalse o demonstration program written in G-Paseal, called DALY,
e G-Paseal 18 runniy qust boad DENO, Compalent, and Run il

We recommend that vou de nel remove the wnle proted tab from vour diskette.
Onee vou have Toaded G-Pasaal remove the GePascal diskette and store st sale
place. Thenmsert a “avork” disk ot wilh be used o stere vour Pascal proyinams,

HOW TO LOAD G-PASCAL FROM CASSETTE

N »
Once vou have turned on the power to vour € ommuodore 6, insert the G-Pas al
casselte indo the casseite ;'L!\\'r and types

LOAD

v

‘) When the sereen displave “FOUND GEASCAL® press the Commodore Togo hey
(bottom Tett-hand corner of Leyvboard)
C-Pascal will take about fve and o fal mmates o load. When it has losded type:

RUN

G-Pascal will now displavits ‘Man Menu’ as desceibed in the Manual.

tA simpler miethad oF foadimg, GePascel from cossetle s Lo pust press the SEHEFG
and FUN STOP keyvs sinuftanceonsty His wall automatically oad and ron C-Pancal),

in the cvent of o foad entor, o second topy o G-Pancat is on the reverse side
of the cassette. BEovou are baving loading problems make sure that the cassette
&‘_Ll\'('!"'- read wrnite heads are dean, and that the cassetie plaver s not ton near the
IV el (Y sets penerate strong mapnetie (elds),

