

ADA TRAINING COURSE
Structured Language

of the Future
for the Commodore-64

By: V. Sasse

244utir7

A DATA BECKER PRODUCT

Published By:

Abacus Software

ADA is a registered trademark of the U.S. Government

COPYRIGHT N O T I C E

Abacus SoFtware makes this package available for use on a
single computer only. It is unlawful to copy any portion OF
this software package onto any medium For any purpose other
than backup. It is unlawFul to give away or resell copies
OF any part OF this package. Any unauthorized distribution
OF this product deprives the authors OF their deserved
royalties. For use an multiple computers, please contact
Abacus Software to make such arraangements.

WFIRRFINTY

Abacus Software makes no warranties, expressed or implied as
to the Fitness OF this software product for any particular
purpose. In no event will Abacus SoFtware be liable for
consequential damages. Abacus SoFtware will replace any
copy OF the soFtware which is unreadable if returned within
90 days of purchase. Thereafter there will be a nominal
charge For replacement.

w

Second Printing, February 1985
Printed in U.S.A. Translated by Greg Dykema, Lauren Thompson
Copyright CCI 1985 Abacus SoFtware, Inc.

P.D. Box 7211
Grand Rapids, MI 99510

Copyright CCI 1989 Data Becker, GmbH
Merowingerstr. 30
9000 DusseldorF, W. Germany

ISBN # 0-916939-15-1

Table OF Contents

INTRODUCTION . i
~W

1 . The EUITOR . 1

1.1. START MENU . 3

. 1.2. WRITE/EDIT MENU 3

1.3. COMnAND MENU . B

2 . USING THE COMPILER . 11

3 . ABOUT THE ADA TRAINING COURSE . 15

9 . WRITING OUR FIRST ADA PROGRAM . 15

5 . TEXT OUTPUT . 23

'Cr, 6 . SCREEN CONTROL . 25

7 . DATA OBJECTS . 35
7.1 TYPES . 35

B . DATA INPUT AND OUTPUT . 91

9 . VALUE ASSIGNnENTS . q5

10 . FUNCTIONS ... 99

11 . DECISIONS . 53

. . 12 LOOPS 57

.-
13 . JUMPS . 6 3

19 . THE OPERATION OF THE COMPILER . 65

15 . LEXICAL ANALYSIS . 63

'VT
16 . SYNTACTIC ANALYSIS . 73

16.1 THE LLC11 PLEASURE GARDEN PART 1. 75

16.2 THE LLC11 PLEASURE GARDEN PART 2: E l

17 . WATCHING THE PARSER DO ITS WORK . E5

17.1 ERROR HANDLING E9

17.2 THE LIST OF CODED ADA WORDS . 90

18 . SEMANTIC ANALYSIS . S3

19 . ADA GRAMMER . 97

19.1. THE RULES OF GRAMMER
19.2. INDEX TO THE GRAMMER . 107

w
20 . THE ASSEMBLER . 113

20.1 OPERANDS . 115

20.2 PSUEDO-OPS .. 119

21 . THE DISASSEMBLER . 125

22 . COMPILER ERROR MESSAGES . 131

23 . RUNTIME ERRORS . 133

23.1 TRACE . 139

29 . THE ADA KEYWORDS . 135

25 . PROBLEM SOLUTIONS . 137 w

Abacue Software ADA Training Courme

The Ada Training Courme

Introduction

What is Ada?

Ada is one of a new generation of programming languages. It

gets its name from from the Countess Ada Lovelace, the

daughter of the English author Lord Byron. The Countess

lived in England during the 18th century and is the first

person to determine how a calculating machine, developed by

Charles Babbage, could be programmed. She is considered to

be the first programmer in the world.

Until now ADA was only known in the higher levels o f data

processing (on mainframes), largely because there was no ADA

compiler for the computers which "people like you and I"

own. ADA is the language of the future and one should at

least become acquainted with it. This is exactly what the

Ada training course allows you to do. Part of the training

course is an Ada compiler which compiles a subset of this

language into machine language.

This training course includes:

1) The program diskette

2) The text book

Abacus Software ADA Training Course

The program diskette:

There are five main programs on the diskette.

A) The EDITOR

You write your ADA programs with the editor. The

editor also includes complete disk management

capabilities. You can easily send commands to your

disk drive, display the directory listing or send

it to a printer, etc.

B) The ayntax-checker for your ADA programs

This program tests your ADA programs for syntactic

correctness. If you are not sure what the syntax

of the ADA programming language is, refer to the

text book.

C) The aerantica-checker and code generator for your
ADA programs.

The program checks your ADA programs for syntactic

correctness and a creates a very fast assembler

program.

D) The aaaerbler

The assembler can be used together with the ADA

compiler, or may be used separately from it. You

can use it to assemble the assembler programs

produced by the ADA compiler or your own machine

language programs.

Abacua Software ADA Training Courae

E) The diaaamerbler

With the disassembler you can convert op-codes in

the computer's memory back into the assembler

mnemonics. This allows you to analyze machine

language programs.

The text book:

The operation of the programs are described in detail in

this text. You will receive an introduction to the ADA

language including examples, problems, and the corresponding

solutions.

This is a true training course with which you will acquaint

yourself with data processing fundamentals. The knowledge

acquired can also be transferable to other programming

languages.

You will not only learn the basics of a new language, ADA,

but also how programming-language compilers work, what

methods they use, and what they in principle can and cannot

do.

You will certainly become better acquainted with your

computer and even enter into the world of machine language

programming. The most important utilities necessary to do

so are included in this training course.

Abacus Software

1. The Editor

ADA Training Course

The editor is the program that you will be using most as a

user of the ADA Training Course. You will write your

programs with it and carry out compilation from it.

The editor offers a number of other capabilities as well. It

can :

- save your programs to diskette

- load your programs from diskette

- print. your programs

- inform you of memory space remaining

- display the disk directory

- scratch files on the diskette

- transmit commands to the disk drive

Let's try out the various functions of the editor so that we

may acquaint ourselves with the most important program in

the ADA training course.

Turn on your computer, disk drive and (if present) printer.

Insert the distribution diskette into the disk drive (By

distribution diskette we mean the disk which you received

with your Ada training course). Load the editor with the

command:

LOAD "EDITOR", 8 , l <RETURN>

After about a minute the program will be completely loaded.

'V

A b a c u s S o f t w a r e ADA T r a i n i n g C o u r s e

Remove t h e d i s t r i b u t i o n d i s k e t t e f r o m t h e d i s k d r i v e a n d

r e p l a c e i t w i t h a new f o r m a t t e d d i s k o r o n e c o n t a i n i n g d a t a

y o u n o l o n g e r n e e d . P r e s s <RETURN>

T h e START menu a p p e a r s o n t h e s c r e e n

T h e e d i t o r h a s a t o t a l o f t h r e e m e n u s :

Menu - START

- COMMANDS

- WRITE/EDIT

T h e s e t h r e e m e n u s c a n b e r e a c h e d w i t h t h e k e y s < @ > , < $ > , a n d

<t> (u p a r r o w) r e s p e c t i v e l y . T h e s e k e y s a r e o p e r a t i o n a l w h e n

t h e c o m p u t e r h a s f i n i s h e d t h e t a s k y o u h a v e i n s t r u c : t e d i t t o

p e r f o r m .

T h e o p t i o n s i n t h e START menu a l l o w y o u t o s e l e c t a f u n c t i o n

s o t h a t a l l o f t h e k e y s r e p e a t a n d t o s e l e c t t h e c o l o r s f o r

t h e c h a r a c t e r s , t h e s c r e e n b o r d e r , a n d t h e b a c k g r o u n d . P r e s s

t h e < f l > a n d t h e n s e l e c t y o u r p r e f e r e n c e i n c o l o r

c o m b i n a t i o n s . Now p r e s s t h e < $ > k e y .

T h e COMMAND menu a p p e a r s o n t h e s c r e e n . From t h i s menu y o u

c a n a c c e s s a l l o f t h e g e n e r a l c o m m a n d s l i s t e d h e l o w .

- s a v e y o u r p r o g r a m s o n d i s k e t t e

- l o a d y o u r p r o g r a m s f r o m d i s k e t t e

- p r i n t y o u r p r o g r a m s

- i n f o r m y o u o f memory s p a c e r e m a i n i n g

- d i s p l a y t h e d i s k d i r e c t o r y

- s c r a t c h f i l e s o n t h e d i s k e t t e

- t r a n s m i t commands t o t h e d i s k d r i v e

Abacus Software ADA Training Course

The <?> (up arrow) key brings us to the WRITE/EDIT menu.

This menu allows you to create a new program or edit an

existing one.
'w

We will now discuss the menus individually. Each menu option

can be selected by pressing the appropriate key. Press the

<8> to return to the START menu.

1.1. START menu

By pressing the function key <fl> we can make all of the

keys repeat, meaning that holding a key down will cause that

character to be entered repeatedly. The <f3> key allows us

to turn this feature off.

The function key <f2> (obtained by pressing <SHIFT> and <fl>

at the same time) changes the color of the screen border.

Simply press <f2> until you get the color which is most

pleasing to you. <f4> changes the color of the background in

a similar manner and <f6> changes the character color.

1.2. WRITE/EDIT menu

This menu is accessed with <?> (up arrow). Press the <?>

(up arrow) key to enter the WRITE/EDIT menu.

Now we will learn how we can create and edit a program with

the editor. We will go through each command of the editor

and see what effects they have.

A b a c u m S o f t w a r e ADA T r a i n i n g C o u r m e

The operation of a key pressed in error can be undone by

immediately pressing the <RETURN> key. Wherever a

particularly damaging error may occur, the computer will ask

to make sure that the function is really intended.
w

Pressing the < f 2 > key prepares the editor for entering a new

program. A message confirming the selection of the option

"Inputtt appears on the screen followed by three lines

containing other information with which we need not concern

ourselves with at the moment. The number "00010" appears in

the fifth line followed by a reverse question mark. This is

the first line number of our text. These line numbers are

irrelevant to the Ada program! They are used only so that

the user can quickly find a given program line. This Ada

Training Course makes references to the line numbers to make

corrections easier. Behind the line number is a field with a

question mark in the color which we chose for the

characters. This is the CURSOR. It indicates the place at '91

which the next input will appear. Please enter the sentence:

"This is supposed to be an Ada program."

If you made a mistake while typing, you can erase the last

character or with repeated use, the last characters, on the

line by using the DEL (delete) key.

The editor will accept only those characters which make

sense in an Ada program. It works as a filter, filtering out

nonsensical input. If the cursor fails to move and no

character is entered, you have pressed an illegal key or key

combination.
'up

Abacus S o f t w a r e ADA T r a i n i n g C o u r s e

We move t o t h e n e x t i n p u t l i n e by p r e s s i n g t h e <RETURN> key.

The l i n e number "00020" a p p e a r s on t h e s c r e e n . Assuming w e

w do n o t want t o e n t e r any more l i n e s , we c a n e x i t t h e i n p u t

mode by p r e s s i n g t h e <RETURN> key a g a i n . P l e a s e p r e s s t h e

<RETURN> key now. The compute r c o n f i r m s t h e e x i t f rom t h e

INPUT mode w i t h t h e message:

iiii I n p u t done iiii

And t h e c u r s o r d i s a p p e a r s .

I n p l a c e o f o u r s e n t e n c e w e c o u l d h a v e e n t e r e d an Ada

program c o n s i s t i n g o f a s e t o f i n s t r u c t i o n s . The s e n t e n c e

" T h i s is supposed t o b e an Ada program." w i l l s u f f i c e i n

o r d e r t o a c q u a i n t o u r s e l v e s w i t h t h e e d i t o r .

P l e a s e p r e s s t h e < f l > key now. The < f l > key r e t u r n s u s t o sv
t h e s t a r t o f t h e t e x t and i n f o r m s u s o f t h i s w i t h t h e

message:

iiii B e g i n n i n g iiii

P l e a s e p r e s s t h e < f 7 > now. With t h e h e l p o f t h e < f 7 > key we

c a n we c a n view o u r program l i n e by l i n e . P l e a s e p r e s s t h e

< f 7 > a g a i n . A t t h e end of t h e t e x t t h e computer r e s p o n d s

w i t h t h e message:

*iii End iiii

P r e s s t h e <?> (u p a r r o w) key now. The <?> (up a r r o w) key

w i l l r e t u r n you t o t h e WRITE/EDIT menu.
'cs

Abacus Software ADA Training Course

You can go immediately to the end of the program by

pressing <f3>. Function key <fS> allows you to step

backwards through the program. Feel free to try out each of 4
the keys and become accustomed to their use. If you forget

any of the keys meanings, you can see the WRITE/EDIT menu

again with <?> (up arrow>.

If you want to add additional lines to the program, press

the <f2> key. Press the <f2> key now. The editor gives you

the next possible line number and allows you to enter

additional lines. Enter the line "Sentence 2", press

<RETURN> and enter the line "Sentence 3" , press <RETURN>.

To exit the input mode press <RETURN>. The computer leaves

the input mode when you press <RETURN> over an empty line.

If you want to edit an already existing line, do the

following: List the line to be changed using <f5> or <f7>

and then press <f6>. The cursor will appear in reverse. You
%d@

can move through the line with the cursor keys and change

characters by simply writing over them. When you are done

editing the line, press <RETURN>. Try changing the number

"3" in line 00030 to " 4 " . To do so press the <fS> key to

list line 00030 then press the <f6> key. Check to see if

line 0030 is changed by entering the menu mode < 7 > (up

arrow), then list the complete text by pressing the <f7> key

four times.

The editor also allows us to insert lines between existing

lines. If, for instance, we want to insert a line between

the second and third lines, we list line two (0020) and then

press <fa>. Do so now. The computer confirms this by

printing the line number "00021" and the cursor reappears. .rs9

We enter the line as we did before under the "Input"

Abacus Software ADA Training Courne

command. Something like "This line follows line 00020". We

terminate the input with <RETURN> and the line number

"00022** appears . We again exit this mode by pressing
'"

<RETURN> before typing anything else on the line. Up to nine

lines can be inserted since the editor numbers the lines by

ten. The editor saves the inserted lines differently and

inserts them into our program at the end of the command. It

gives us the appropriate messages on the screen.

If we would like to have all of the lines numbered by ten

again, we simply press <f4>. Using this option we can insert

as many lines as desired. Do so now, then list the

renumbered text using the <f7> key.

There are two possibilities for erasing lines: with the

"pound" key or the left-arrow key. You can erase individual

lines with the pound key and entire blocks with the left
*V arrow. Pressing the pound key erases the line which you last

listed with <f5> or <f7>. List line 00030 and then delete

it using the "pound key". Check to be sure line 00030 was

deleted, then renumber the text using the <f4> key.

Now press the left-arrow key to delete a range of lines.

After pressing the left-arrow key you will be asked "from

line :" , you must then enter a line number and press

<RETURN>. Enter 20 and press <RETURN>. The question "to

line : " is answered in the same way. Enter 30 and press

<RETURN>. List the text to be sure the lines "from line 20"

"to line 30" were deleted.

With this we complete our discussion of the WRITE/EDIT menu

*Y and all that remains is the COMMAND menu.

A b a c u s S o f t w a r e ADA T r a i n i n g C o u r s e

1.3. COMMAND menu:

I n o r d e r t o f o l l o w t h e e x a m p l e s i n t h i s s e c t i o n , y o u s h o u l d

h a v e a t l e a s t o n e l i n e o f t e x t i n memory.

P r e s s <*> a n d we e n t e r t h e COMMAND menu.

F i r s t we w o u l d l i k e t o a s k t h e c o m p u t e r how much s p a c e i s

l e f t i n memory s o t h a t we know how much we c a n a d d t o o u r

p r o g r a m . T h e f u n c t i o n k e y < f 7 > d o e s t h i s f o r u s . P l e a s e

p r e s s t h e < f 7 > k e y now t o v i e w t h e a v a i l a b l e memory. T h e

c o m p u t e r r e s p o n d s w i t h t h e m e s s a g e (f r e e memory may b e

d i f f e r e n t) :

**** 20046 C h a r a c t e r s free ****

If y o u a r e c e r t a i n t h a t y o u n o l o n g e r n e e d t h e c o n t e n t s o f w
t h e d i s k e t t e i n t h e d i s k d r i v e , y o u w i l l w a n t t o f o r m a t t h i s

d i s k e t t e a n d become a c q u a i n t e d w i t h t h e f u n c t i o n " S e n d

command t o d i s k d r i v e . " P r e s s <f6> a n d t h e f o l l o w i n g

m e s s a g e w i l l a p p e a r :

**** Command t o d i a k

**** C o r r a n d ?

We e n t e r : " n : d a t a , O l W a n d p r e s s t h e <RETURN> k e y , t h e r e b y

s e n d i n g t h e command t o f o r m a t a d i s k t o t h e d i s k d r i v e . T h e

name " d a t a " a n d t h e i d e n t i f i c a t i o n c o d e "01" a r e p l a c e d o n

t h e d i s k . T h e d i s k d r i v e r e q u i r e s some t i m e t o e x e c u t e t h i s

command. If y o u made a n e r r o r w h i l e t y p i n g t h e command, t h e

d r i v e w i l l u s u a l l y r e s p o n d w i t h a "SYNTAX ERROR." You s i m p l y 4
c o r r e c t t h e command i n t h i s c a s e . I n g e n e r a l , y o u c a n

Abacus S o f t w a r e ADA T r a i n i n g C o u r e e

t r a n s m i t a n y command f o u n d i n c h a p t e r 4 o f t h e d i s k d r i v e

manual t o t h e d r i v e i n t h i s manner .

w
We n e e d o n l y p r e s s t h e < f l > k e y i n o r d e r t o s a v e o u r Ada

p rogram t o t h e d i s k e t t e . You w i l l b e a s k e d f o r a name. A f t e r

e n t e r i n g t h i s name, p r e s s <RETURN> a n d t h e d i s k d r i v e w i l l

p r o c e e d t o s a v e t h e p rogram.

P r e s s < f 6 > t o make s u r e t h a t t h e f i l e was s a v e d c o r r e c t l y .

You w i l l r e c e i v e i n f o r m a t i o n c o n c e r n i n g t h e name o f t h e

d i s k , i t s i d e n t i f i c a t i o n number a n d t h e DOS v e r s i o n t h e d i s k

was f o r m a t t e d u n d e r .

A p rog ram c a n b e l o a d e d b a c k i n t o t h e e d i t o r w i t h t h e <f3>

key . You a r e a s k e d f o r t h e name o f t h e p rogram, a n d a f t e r

t h i s i n p u t and s u b s e q u e n t l y p r e s s i n g <RETURN> t h e command

w i l l b e e x e c u t e d .
w

Programs on t h e d i s k e t t e c a n b e removed w i t h t h e command

" D e l e t e f i l e . " After p r e s s i n g <f8> you a r e a s k e d f o r t h e

name o f t h e f i l e which i s t o b e e r a s e d . A f t e r e n t e r i n g t h e

name o f t h e f i l e and p r e s s i n g <RETUNN> t h e f i l e w i l l b e

d e l e t e d f r o m t h e d i s k .

The < f 4 > key i s u s e d t o p r i n t a p rogram on t h e p r i n t e r . You

r u a t e n t e r a comment wh ich a p p e a r s a s a h e a d e r f o r t h e

l i s t i n g . L e a d i n g s p a c e s may b e e n t e r e d b y p r e s s i n g <SHIFT>

a n d t h e s p a c e b a r t o g e t h e r .

Wi th t h e f u n c t i o n k e y < f 2 > w e s t a r t t h e Ada c o m p i l e r . The

p rogram c u r r e n t l y i n memory is c o m p i l e d . You w i l l b e a s k e d

1V i f you want t o f i r s t s a v e t h e p rogram b e c a u s e t h e memory

w i l l b e c l e a r e d a f t e r t h e c o m p i l e r h a s done t h e f i r s t p a r t

Abacus Software ADA Training Course

of its work. See the following section "Using the compiler"

for more information.

This concludes the section on the Ada editor. It would be a

good idea to practice using the editor, so you may become

accustomed to using it.

Abacus Software

2. Using the compiler

ADA Training Course

b
After you have written a program with the editor, enter the

COMMAND menu and press the <f2> key. You will be asked if

this key has been pressed in error. If you enter a character

other than "y" and press <RETURN>, the command will be

terminated. The compiler will then ask if you would like to

include a TRACE function on the compiled program. This will

cause the compiled program to print the sequence of line

numbers from the Ada source code as it executes. Unless you

are having problems with a program the usual answer is NO.

When you press <RETURN>, you will then be asked if you want

to save the program. This can be skipped by entering a

character other than "y" and pressing <RETURN>. If you press

only <RETURN>, you must give a name for your program. If a

program by the same name is found on the disk, it will be

erased and the new program saved in it's place.
w

After saving the program (or skipping this option), the

compiler begins with the lexical analyeie. When this is

done, the computer will require the distribution diskette in

order to load the syntactic analy~is program. After this

program is loaded you must reinsert your data disk.

After the the syntactic analysis the computer again requires

the distribution diskette in order to load the eemantic

analyeis program. Then your data disk is again needed in

order to continue the compilation.

If an error was encountered during the syntactic analysis of

your program, you can load the editor directly in order to

correct the program.

Abacum Software ADA Training Courme

The program for semantic analysis creates an assembly

language program with the name "ADA.SRCW.

If the semantic analyzer discovers an error, you can reload

the editor at the end of the semantic analysis.

If the program compiled successfully, load the assembler in

order to assemble the ADA.SRC program. A third option is to

end the program and load ADA.SRC into the computer.

Load the assembler with:

LOAD "ASSEMBLER", 8,1

Load the assembly language program with:

LOAD "ADA.SRCn,8

If you load the assembler, you will be asked for the name of

the program which you would like to assemble. If you press

<RETURN>, ADA.SRC will be assembled. You can also enter the

name of a different assembly language program, however.

The finished machine language program receives the extension

".OBJW. A machine language program created from an Ada

program can be loaded with:

LOAD "ADA.0BJn,8,1

and your own programs with:

LOAD "name.0BJn,8,1

Abacus Software ADA Training Courae

"ADA.OBJ" can be started with RUN, your own programs

with SYS start-address.

w
Ada on the Commodore 64 is very disk intensive so it is a

good idea to re-format your data diskettes at regular

intervals. Remember that reformatting a disk removes all

information from it, so don't do this to disks which still

contain information you might want. It has happened to me

that the disk drive can no longer properly read the files on

the diskette because the read/write head is misaligned. This

can produce quite peculiar compilation results!

Abacus Software ADA Training Course

{This page left blank intentionally)

Abacum Sof triare ADA Training Courae

3 . About t h e Ada t ra in ing courae - In order to better understand the contents of this training

course, I would first like to present the goals I had when I

wrote this training course package.

The goal of the Ada training course is to acquaint you with

a structured programming language. The language at hand is

the very new language Ada. You will become acquainted with

fundamental structures which are present in most modern

programming languages. The training course is not tied

exclusively to Ada; you will also learn things about your

CBM 64.

A large portion of the training course is concerned with

programming in assembly language and the use of operating

system routines. This is because the assembler serves as an

interface between the "higher level" programing language Ada

and the 6510 microprocessor which forms the "heart" of your

computer.

The operation of the assembler routines will give you

valuable insight into how you can write your own assembly

language programs. The assembler and disassembler programs

included allow you to begin immediately with this.

Thus the training course operates on two planes, the plane

of the high-level programming language and the plane of

machine language. One seeks to develop a language with which

one can program easily and elegantly, with whose help

programs (sets of instructions) can be written which can be

understood by others.

Abacus Software ADA Training Course

Our sets of instructions must be carried out by

microprocessors. In the construction of the microprocessors,

the goal is to manipulate memory locations and process their

contents as quickly as possible. w

The goal of our course can be abstractly formulated as

follows: Proceeding from an initial condition of our memory

locations, their contents are to be conveyed to a desired

condition with the help of the program. The microprocessor

should carry this out as quickly as possible.

Microproceseors, however, understand only their own machine

language and since their are many different microprocessors,

their are also many different machine languages. If one then

wants to program in a higher-level language, some connection

between the high-level language and the machine language of

the microprocessor is required. The compiler represents this

connection. The compiler is a program which is designed to

work with the microprocessor. It translates our program into w
the machine language of the processor in question. A

compiler generally consists of several programs which

convert the the program to be translated into machine

language step by step.

If one wants to write a compiler which will run on more than

one computer (microproceseor), a procedure like the

following will help him to do so: One translates the high-

level program into the assembly language of a "fictitious"

microprocessor. A microprocessor which does not exist, but

which has the fundamental properties of real

microprocessors. From this language it is no great step to

the machine language of the individual microprocessor. For

each new microprocessor, "only" this portion of the compiler 4
need be rewritten to make the entire compiler work. One can

Abacus Software ADA Training Course

use the fact that the machine languages of the various

microprocessor are related. For our compiler, this interface

is for the 6510 microprocessor.

&r

You can learn how the programs which create this assembler

code operate in the sections concerning the operation of the

compiler. You will learn how programs can be in the

situation to analyze other complex programs. A few sentences

about the individual analysis steps:

The program for lexical analysis checks all Ada programs for

lexical correctness. The syntactic analysis works with a

grammar which represents a large portion of the Ada

definition. It can check almost all programs used in normal

work for syntactic correctness.

Ada is a very young language which has been changed in parts

many times over the last years. So far, complete versions of

Ada are only available for mainframe computers, and as far

as I know, only test versions are available. This is

attributable to the complexity of the language. With this

background it is quite nice to be able to check many

programs for syntactic correct.,ess. During the development

of the syntax checker I have checked a variety of programs

from Ada books for syntectic correctness and with many

programs, which probably could not have been tested before,

discovered discrepancies.

There are stringent limitations on the subsequent semantic

check and the creation of the assembly language programs.

This is first of all due to the fact that the syntactic

checking of Ada programs is very time-consuming, and second

because of the structure of the compiler itself. Since all

Abacua Software ADA Training Courae

of the compiler programs cannot fit into memory at the same

time, the programs run in sequence. This means that

information required by programs following one another must

be saved on disk. Each program works only with the

information of the previous program. Memory can be saved

this way but in order to create a piece of an assembly

language program, all of the necessary information must be

present. But because memory space must be saved, of the

excellent capabilities of Ada, only those which can be made

to work under these limitations are included.

I hope that I have attained my goal of offering you an

elegant option for creating short, fast assembly language

programs.

In addition it is possible to combine several programs with

each other and to address Ada programs from BASIC.

Abacus Software ADA Training Course

4. Writing our f i r s t Ada program

A f t e r you have l o a d e d t h e e d i t o r and s t a r t e d i t , s e l e c t t h e

menu WRITE/EDIT and e n t e r t h e f o l l o w i n g program (t h e

u n d e r l i n e c h a r a c t e r "-" a s i n A D A - 1 is o b t a i n e d by p r e s s i n g

t h e Commodore key and t h e P key a t t h e same t i m e .) :

00010 procedure A D A - 1 is

00020 --
00030 -- The d a t a o b j e c t s t h a t o u r program

00040 -- u s e s w i l l be d e c l a r e d h e r e .

00050 --

00060 begin

00070 --
00080 -- The e x e c u t a b l e s t a t e m e n t s

00090 -- o f o u r program a p p e a r h e r e .

-- 00100 --
00110 n u l l ;

00120 --
00130 e n d A D A - 1 ;

T h i s i s t h e s m a l l e s t p o s s i b l e Ada program (w i t h o u t t h e

comments). I t h a s t h e name "ADA-1". The name a p p e a r s a t t h e

s t a r t o f t h e program and a t t h e end. I t is n o t a b s o l u t e l y

n e c e s s a r y a t t h e e n d , b u t when i t a p p e a r s i t must be t h e

same name a s a t t h e b e g i n n i n g . A d i s c r e p a n c y w i l l be s e e n a s

a n e r r o r by t h e c o m p i l e r . I t is a good i d e a t o i n c l u d e t h e

name a t t h e end o f t h e program a s w e l l a s a t t h e b e g i n n i n g

s o t h a t you a lways know t h e program is a t an end . T h i s i s

n o t n e c e s s a r y f o r s m a l l p rograms , b u t we want t o l e a r n how

t o w r i t e l a r g e programs c l e a r l y and u s e t h e c a p a b i l t i e s

which Ada o f f e r s .

Abacum Software ADA Training Courme

The program begins at the keyword "procedure". Keywords are

words which have a predetermined meaning in Ada. Keywords

are part of the language. The keyword "procedure" means that

a program to be executed begins at this spot. w@

After "procedure" comes the name of the program, which we

may choose freely. The name chosen may not be an Ada keyword

because keywords are predetermined and therefore protected.

Names of data objects may and should be longer than the

maximum of two letters to which we are accustomed to in

BASIC. Therefore it is possible to give sensible and

suggestive names to data objects. This increases the

readability of a program. Names (also called identifiers)

can be a maximum of 250 characters long. In practice, you

will probably not reach this limit, but it is given for the

sake of completeness. Identifiers must begin with a letter

and may contain letters, digits and the character "-". This
is the underline character (Commodore P) used to separate

words in the identifier, making it easier to read.

The computer does not distinguish between upper and lower

case, "procedure" or "PROCEDURE" or "PROCedure" all have the

same meaning as far as the compiler is concerned. To easily

distinguish Ada keywords we will write the keywords in

boldfaced lower case.

A separating character must be between keywords and

identifiers. A space is a separator; we will learn others

later.

Comments in Ada are denoted by two consecutive minus signs

(-- , hyphens, dashes). Comments make use of the entire line.

Ada instructions can not follow a comment in a line.
' a d

Abacum Software ADA Training Course

Examples of valid and invalid comments:

-- This is a valid comment
-- Comments can extend over several
-- lines, or may be empty
- -

- - This is not a valid comment!

No spaces may be between the minus signs.

Back to our example: After the name of our program follows

the keyword is. We will later put the data objects

(variables, constants, . . .) which our program will use

between this word and the keyword begin.

After begin follows the part of the program which contains

w the executable instructions. These are instructions which

tell the computer to perform a specific action. The

instruction I have chosen here is the instruction null. This

instruction serves as a place holder in Ada. We will use it

wherever an Ada instruction must be, but we do not yet know

which instruction we will chose, or when the computer should

execute the null instruction.

Ada instructions are ended with a semicolon.

The program ends with the keyword end. The name of the

program follows, terminated by a semicolon.

You probably never thought that one could say so much about

a program which doesn't do anything. w

1 ~ b a c u 8 software ADA Training Cour8e

If you wish, you can compile this program. It will create a

machine language program which contains no instructions, but

it will allow you to test the operation of the compiler.

Abacus S o f t w a r e

5. T e x t o u t p u t

ADA T r a i n i n g C o u r s e

I n t h i s s e c t i o n we w i l l l e a r n how t o o u t p u t t e x t a n d r e c e i v e

o u r f i r s t e x p o s u r e t o t h e c o m p i l e r .

One p r o p e r t y o f Ada is t h a t t h e p o s s i b i l i t y e x i s t s t o b r e a k

c o m p l e x p r o b l e m s down i n t o s m a l l e r o n e s . One wri tes a

p r o g r a m w h i c h w e c a l l i n A D A a p a c k a g e f o r e a c h smaller

p r o g r a m a n d t h e n a s s e m b l e s t h e t o t a l s o l u t i o n o u t o f t h e s e

p a r t i a l o n e s . The a d v a n t a g e s o f t h i s are c lear : We wr i te a

p r o g r a m f o r a s p e c i f i c p r o b l e m , t e s t i t o u t , a n d s a v e i t .

F o r t h e moment a l l t h a t i n t e r e s t s u s i s wha t d a t a mus t b e

p a s s e d t o t h e p r o g r a m i n o r d e r t o g e t c e r t a i n i n f o r m a t i o n

b a c k . The commands t h e c o m p u t e r e x e c u t e s t o d o t h i s a r e

u n i m p o r t a n t f o r u s . F u r t h e r m o r e , w e n e e d n o l o n g e r g i v e a n y

c o n s i d e r a t i o n t o t h i s p a r t i a l s o l u t i o n ; w e o n l y u s e i t .

S e v e r a l p e r s o n s c a n work on o n e l a r g e p r o g r a m w i t h o u t o n e w
b e i n g d e p e n d e n t on a n y o t h e r . The p r o g r a m m e r s s i m p l y a g r e e

o n t h e f u n c t i o n s o f t h e p r o g r a m p a r t s a n d t h e manne r i n

w h i c h t h e y a r e a c c e s s e d a n d t h e n t h e y s t a r t p rog ramming

i n d e p e n d e n t l y .

The p r o g r a m w h i c h i s r e s p o n s i b l e f o r t h e i n p u t a n d o u t p u t o f

d a t a is a l s o s u c h a p a c k a g e . I t is a g r e e d upon i n t h e

l a n g u a g e a s a s o - c a l l e d " s t a n d a r d p a c k a g e , " w h i c h means t h a t

i t is p a r t o f t h e e q u i p m e n t o f t h e c o m p i l e r . T h i s p a c k a g e

mus t b e r e w r i t t e n f o r e a c h c o m p u t e r , s o t h a t t h e same

commands p e r f o r m t h e same o p e r a t i o n s i n e a c h i m p l e m e n t a t i o n

o f t h e l a n g u a g e . The a g r e e d - u p o n s c o p e o f t h i s p a c k a g e is

t o o l a r g e f o r t h e CBM 64. I h a v e i n c l u d e d t h e c a p a b i l i t i e s

f o r you w h i c h w e r e mos t i m p o r t a n t t o me, w i t h o u t m a k i n g t h i s

p a c k a g e consume t h e e n t i r e memory o f t h e c o m p u t e r .

Abacus Software ADA Training Course

Don't worry--you will find everything you need for writing

useful programs.

If we want to use the input/output package, we must inform

the compiler of this. This is done with the commands:

with TEXT-10; use TEXT-10;

The package for text input/output is called "TEXT-10". These

commands must be at the start of the program. The with

command must appear before the keyword procedure. The use

command can also appear at other places.

Let us begin with text output.

The predetermined receiver of output is the screen. If we

want the sentence "Hello, this works quite well!" on the

screen, we must write the following program:

00010 with TEXT-10; uee TEXT-10;

00020 --

00030 procedure OUTPUT-1 is

00040 --
00050 begin

00060 --
00070 PUT ("Hello, this works quite well!") ;

00080 --
00090 end OUTPUT-1;

The command which we use to output strings (text) is called

PUT. PUT is not a keyword, but it has a specified meaning

in connection with the previous with and uee commands. This

command will be the same in all implementations of Ada.
w

Abacum Software ADA Tra in ing Couree

We p l a c e t h e o u t p u t t e x t i n p a r e n t h e s e s and e n c l o s e t h e

a c t u a l s t r i n g i n q u o t a t i o n marks . T h i s is c a l l e d a " s t r i n g

l i t e r a l " i n Ada. T h e r e a l s o " c h a r a c t e r l i t e r a l s " i n Ada.

These a r e i n d i v i d u a l c h a r a c t e r s and a r e e n c l o s e d i n

a p o s t r o p h e s i n Ada. F o r example , ' A ' o r ' h ' o r '- ' a r e

c h a r a c t e r l i t e r a l s .

The o u t p u t o f c h a r a c t e r s i s d o n e i n t h e same manner a s t h e

o u t p u t o f s t r i n g l i t e r a l s .

PUT (' b y) ;

The PUT command o u t p u t s t h e c h a r a c t e r o r s t r i n g a t t h e

c u r r e n t p o s i t i o n o f t h e c u r s o r . A t t h e end o f t h e command

t h e c u r s o r is p l a c e d a t t h e n e x t o u t p u t p o s i t i o n .

*u
If you want t o o u t p u t a c h a r a c t e r o r s t r i n g l i t e r a l a n d s e t

t h e c u r s o r a t t h e s t a r t o f t h e n e x t l i n e , u s e t h e f o l l o w i n g

command:

PUT-LINE (".") ;

PUT-LINE (' . ') ;

The p e r i o d s s t a n d f o r a c h a r a c t e r o r s t r i n g l i t e r a l . To

p l a c e t h e c u r s o r one l i n e l o w e r , end t h e o u t p u t on t h e

c u r r e n t l i n e w i t h t h i s command:

N E W - L I N E ;

To s k i p l i n e s o r t o p r i n t b l a n k l i n e s , u s e t h e command i n

f o l l o w i n g form: The number must a n a t u r a l number (i n t e g e r
.tu

g r e a t e r t h a n z e r o) . (NUMBER-1) l i n e s w i l l t h e n b e p r i n t e d .

Abacus Software

Example:

ADA Training Courme

NEW-LINE (4) ;

w
This ends the output on the current line and prints three

blank lines.

In order to position a cursor within a line, use this

command:

SET-COL (column) ;

The cursor is placed at the column specified in place of the

word "column". Example: We want to place the cursor at

column 35.

SET-COL (35) ;

'p4
The output can be sent to the printer instead of the screen

with this command:

SET-OUTPUT (printer) ;

Now all output will be sent to the printer. Output can be

redirected to the screen with:

SET-OUTPUT (screen) ;

Make sure that you do not direct the output to the same

device twice in a row. The compiler can first recognize this

error at execution time, after it has compiled the entire

program, at the time you have started the machine language

program.
w

Abacus Software

Exercise:

ADA Training Course

We now h a v e l e a r n e d enough i n o r d e r t o wr i t e a s m a l l Ada

p rog ram. S o l v e t h e f o l l o w i n g t a s k , o n e p o s s i b l e s o l u t i o n c a n

b e f o u n d i n t h e " S o l u t i o n s " s e c t i o n . The s o l u t i o n h a s t h e

name "OUTPUT 2". The g i v e n s o l u t i o n d o e s n o t mean t h a t o u r

p r o b l e m c a n o n l y b e s o l v e d i n t h i s manner o r t h a t i t is

n e c e s s a r i l y t h e b e s t s o l u t i o n . I t means o n l y t h a t i t i s t h e

s o l u t i o n wh ich I h a v e worked o u t f o r you. Write a p rog ram

which o u t p u t s t h e f o l l o w i n g s e n t e n c e s i n t h e g i v e n form:

1. O u t p u t t h e s t r i n g l i t e r a l " T h i s i s o u r f i r s t t a s k . "

2 . Move t o t h e n e x t o u t p u t l i n e .

3 . O u t p u t t h e s t r i n g " T h i s s t r i n g s t a r t s i n t h e s e c o n d l i n e

a n d e x t e n d s i n t o l i n e number "

w
4 . O u t p u t t h e c h a r a c t e r ' 3 ' d i r e c t l y b e h i n d t h e p r e v i o u s

s t r i n g .

5. O u t p u t 5 b l a n k l i n e s .

6. O u t p u t t h e l i n e "Now e v e r y t h i n g g o e s t o t h e p r i n t e r . "

7 . D i r e c t t h e f o l l o w i n g o u t p u t t o t h e p r i n t e r .

8. O u t p u t "Is t h e p r i n t e r work ing?"

9. S w i t c h t h e o u t p u t b a c k t o t h e s c r e e n .

w 1 0 . O u t p u t t h e c h a r a c t e r ' E ' i n co lumn 35.

Abacus Software ADA Training Course

{This page left blank intentionally]

Abacus Software

6. Screen control

ADA Training Course

The following capabilities are not part of the Ada standard

but our computer places them at our disposal, so it seems a

shame not to use them.

Theae capabilities are very interesting because a compiled

program executes these functions very quickly. They are so

fast in part because neither the video interface chip (the

device responsible for the screen output) nor your

television, to say nothing of your eyes, can follow an

output stream which consists only of these functions.

Programa with theae functions are executed with maximum

apeed, very quickly indeed in conpariaon with BASIC.

Our Ada program uses the CBM-64 operating system routines

for theae functions. I have written a package for the CBM-64

called CBM-64 so that you can use these functions. Pleaae

include this package at the start of all your programs in

the future.

with CBM-64 ; u#e CBM-64;

The following functions are available for screen control:

SET-ROW (line) ;

This command is related to the command SET-COL. The command

SET-ROW is not included in the Ada standard, however.

SET-ROW aets the curaor to the given line. You can choose a

iy line number between 1 and 24.

Abacus Software ADA Training Course

Example: Set the cursor to line 15.

SET-ROW (15) ;

We can clear the screen with the command:

SCREEN-CLR ;

We set the cursor in the upper left-hand corner of the

screen with:

CURSOR-HOME ;

The following commands allow us to change the color of the

screen border, background, and characters. For the sake of

simplicity I will enumerate all of the possibilities.

Note the way each color is designated, otherwise the w
compiler will respond with "Unrecognized color".

Selecting the type (character) color:

SET-TYPE

SET-TYPE

SET-TYPE

SET-TYPE

SET-TYPE

SET-TYPE

SHT-TYPE

SET-TYPE

(black) ;

(white) ;

(red 1;
(green 1;
(blue) ;

(purple) ;

! yellow) ;

(cyan 1 ;

Abacus Software

S e l e c t i n g t h e border c o l o r :

ADA Training Cour8e

SET-BORDER (b l a c k) ;

SET-BORDER (w h i t e) ;

SET-BORDER (cyan) ;

SET-BORDER (r e d) ;

SET-BORDER (p u r p l e) ;

SET-BORDER (g r e e n) ;

SET-BORDER (b l u e) ;

SET-BORDER (y e l l o w) ;

SET-BORDER (orange) ;

SET-BORDER (brown) ;

SET-BORDER (l i g h t - r e d) ;

SET-BORDER (grey-1) ;

SET-BORDER (grey-2) ;

SET-BORDER (l i g h t - g r e e n) ;

SET-BORDER (l i g h t - b l u e) ;

SET-BORDER (grey-3) ;

Abacus Software

Selecting the background color:

A D A Training Course

SET-BKGND (black) ;

S E T - B K G N D (white) ;

SET-BKGND (cyan) ;

S E T - B K G N D (red) ;

SET-BKGND (purple) ;

S E T - B K G N D (green) ;

SET-BKGND (blue) ;

S E T - B K G N D (yellow) ;

SET-BKGND (orange) ;

S E T - B K G N D (brown) ;

SET-BKGND (light-red) ;

S E T - B K G N D (grey-1) ;

S E T - B K G N D (grey-2) ;

S E T - B K G N D (light-green) ;

SET-BKGND (light-blue) ;

SET-BKGND (grey-3) ;

Abacus Software

Exercise:

ADA Training Course

Write a program which does the following:
b

1. Clears the screen.

2. Set the border color to "grey-2"

3. Set the background color to "white"

4 . Set the cursor in line 10, column 20.

5. Output "L 10, C 20" in black type.

6 . Set the cursor in the upper left-hand corner of the

screen.

The solution for this task can be found under the name

"screen control."

Try this out and see how fast your CBM-64 can be. You will

be surprised.

Abacus Software ADA Training Courme

{this page left blank intentionally)

A b a c u s S o f t w a r e ADA T r a i n i n g C o u r s e

7 . Data o b j e c t s

w
By d a t a o b j e c t s we mean o b j e c t s i n o u r p r o g r a m t o w h i c h w e

c a n a s s i g n v a l u e s . W e d i s t i n g u i s h b e t w e e n c o n s t a n t s a n d

v a r i a b l e s .

D a t a o b j e c t s a r e a s s i g n e d a s p e c i f i c t y p e . They t h e n a s s u m e

t h e c h a r a c t e r i s t i c s o f t h a t t y p e .

8.1 T y p e s :

We w i l l b e w o r k i n g w i t h t h r e e d i f f e r e n t d a t a t y p e s i n o u r

Ada t r a i n i n g c o u r s e :

T y p e : INTEGER

T h i s d a t a t y p e r e p r e s e n t s a l l w h o l e n u m b e r s i n t h e r a n g e

- 3 2 7 6 8 t o + 3 2 7 6 7 .

T y p e : FLOAT

T h i s d a t a t y p e r e p r e s e n t s a l l f l o a t i n g - p o i n t n u m b e r s i n t h e

r a n g e + / - 1 . 7 0 1 4 1 1 1 8 3 E + 3 8 a n d + / - 2 . 9 3 8 7 3 5 8 8 E - 3 9 .

T y p e : STRING

O b j e c t s o f t h i s t y p e c a n b e a s s i g n e d s t r i n g s o f c h a r a c t e r s

u p t o 8 0 c h a r a c t e r s l o n g .

Abacus Software ADA Training Courme

Conatants:

Constants are objects which assume a value at their

declaration. This value cannot be changed during the course
'w id

of the program. The compiler checks for this and refuses a

value assignment.

Constants of any of the previously named types can be

declared.

Examples:

Constants of type INTEGER:

INTEGER-1 : constant INTEGER : = 15;

START-QUANTITY-CARS : constant INTEGER : = 3576;

ACCELERATION-FACTOR : conatant INTEGER : = -15;

The declaration is constructed as follows:

At the beginning of the line stands the name or identifier

of the data object. Then follows the colon and the keyword

conatant. Next comes the type identifier and, preceded by a

colon and equals sign, the value our constant is to have.

With the declaration of any data object it is possible to

define several objects at once.

Example:

OBJECT-1, OBJECT-2, OBJECT-3 : constant INTEGER : = -1000;
w

The data objects are separated from each other by a comma.

Abacus S o f t w a r e ADA T r a i n i n g C o u r s e

C o n s t a n t s o f t y p e FLOAT:

FLOAT-123 : c o n s t a n t FLOAT : = -3 .986-22;

bw P I : c o n s t a n t FLOAT : = 3 .1415 ;

SHERRY, LIQUEUR, WHISKEY : c o n s t a n t FLOAT : = 3 5 ;

C o n a t a n t a o f t y p e a t r i n g :

STR : c o n s t a n t STRING : = " p e a r l " ;

ADDRESS : c o n s t a n t STRING : = "Grand R a p i d a " ;

SNTNCE-START, SNTNCE-END: c o n s t a n t STRING : = " H i t h e r e ! " ;

Fo r c o n s t a n t s o f t y p e s t r i n g , t h e amount o f memory t a k e n up

by t h e c o n s t a n t d e p e n d s on i t a l e n g t h .

When w e d e c l a r e d a t a o b j e c t s which w i l l h a v e o n l y o n e v a l u e

t h r o u g h o u t t h e p rogram a n d a r e n e v e r t o b e r e a s s i g n e d , w e
.-

d e c l a r e t h e s e aa c o n a t a n t e .

If we wan t t o p e r f o r m c a l c u l a t i o n a a n d a s s i g n a v a l u e t o a

d a t a o b j e c t d u r i n g t h e c o u r a e o f t h e p rogram, w e n e e d

v a r i a b l e s . Theae o b j e c t a c a n b e d e f i n e d a n d r e d e f i n e d d u r i n g

t h e e x e c u t i o n o f a p rogram. They c a n a l a o b e a s a i g n e d a n

i n i t i a l v a l u e . If we a r e s t a r t i n g o u r p rogram, t h e v a r i a b l e s

a r e a a a i g n e d v a l u e s .

V a r i a b l e a o f t y p e INTEGER:

SUSAN

PETER-MEIER

SAM, J O E , ANN
w

: INTEGER : = 22 ;

: INTEGER : = 1 8 ;

: INTEGER : = 1 7 2 ;

Abacum Software ADA Training Courme

Variables of type FLOAT:

PRICE : FLOAT ;

SUM : FLOAT : = 2E+10;

PROJ, EXIST, MOVE : FLOAT : = 0 ;

Variables of type atring:

FIRST-NAME-1 : STRING:= "Mike";

FIRST-NAME-2, FIRST-NAME-3 : STRING:= "Harold";

LAST-NAME : atring;

Now we know how data objects are declared.

The types which you have become acquainted with are

predefined in Ada. They belong to the language standard. An

Ada compiler for larger computers would have additional data

types available. Also missing in this training courae is the

ability to form user-defined types from those already

existing. Due to memory limitations these were not

implmented in the Ada Training Course compiler, but you nay

run the lexical analysis and syntactical analysis on

programs using the entire ADA language. You will not be

able to run the semantic analysis or compile theae programs

on the CBM-64.

Abacus Software ADA Training Course

Write the declaration portion of a program to work with the w
following data objects:

1. A whole number constant with the name WHOLE and the

value -1.

2. A floating-point number with the name FLOATP and the

value 0.3E-6.

3. A string constant with the name STR and the value "Hi

there! "

4. An integer variable with the name INT-VAR.

5. Two floating-point variables with the names PRICE-CHEESE
w

and PRICE-SAUSAGE and the initial values 0 and 0.

6. A string variable with the name HOUSENAME and your last

name as the initial value.

The model eolution hae the name "DECLARATIONS".

Abacus Software ADA Training Course

{this page left blank intentionally)

Abacus S o f t w a r e ADA T r a i n i n g C o u r a e

8. Data i n p u t a n d o u t p u t

w
The i n p u t and o u t p u t o f d a t a i s h a n d l e d by t h e computer-

d e p e n d e n t p a c k a g e CBM-64. Don ' t f o r g e t t o s p e c i f y t h i s

p a c k a g e b e f o r e t h e d e c l a r a t i o n p o r t i o n .

We u s e t h e f o l l o w i n g command t o r e a d d a t a o b j e c t s f rom t h e

keyboard :

GET (d a t a o b j e c t) ;

You r e p l a c e t h e words " d a t a o b j e c t " w i t h t h e name o f a

v a r i a b l e t o which you want t o a s s i g n a new v a l u e . The

program t h e n s t o p s a t t h e p o i n t i n t h e program where t h i s

command is f o u n d a n d r e q u e s t s i n p u t f rom t h e k e y b o a r d w i t h a

q u e s t i o n mark (?) . Be s u r e t h a t you e n t e r a v a l u e o f t h e w
a p p r o p r i a t e t y p e .

I n o r d e r t o d i s p l a y t h e v a l u e s o f d a t a o b j e c t s on t h e

s c r e e n , u s e t h e f o l l o w i n g command:

PUT (d a t a o b j e c t) ;

You a r e a l r e a d y f a m i l i a r w i t h t h e PUT command from t e x t

o u t p u t .

I t is good s t y l e t o make i n p u t s i m m e d i a t e l y v i s i b l e w i t h an

o u t p u t (e c h o t h e i n p u t) i n o r d e r t o p r o v i d e a c h e c k . A l s o ,

do n o t f o r g e t t o comment y o u r p rograms s o t h a t you c a n

u n d e r s t a n d them l a t e r . Take a look a t t h e f o l l o w i n g example :
'u

Abacun Software ADA Training Courme

Example:

00010 with TEXT-10; ume TEXT-10;

00020 with CBM-64; ume CBM-64;

00030 --

00040 -- Example f o r t h e i n p u t a n d o u t p u t o f d a t a .

00050 -- The name and y e a r o r b i r t h o f t h e u s e r

00060 -- w i l l b e e n t e r e d a n d p r i n t e d .

00070 --
00080 procedure DATA-IN-DATA-OUT i n

00090 --
00100 -- D e c l a r a t i o n o f t h e s t r i n g v a r i a b l e f o r

00110 -- t h e name o f t h e u s e r .

00120 --
00130 NAME : STRING;

00140 --
00150 -- D e c l a r a t i o n o f t h e i n t e g e r v a r i a b l e s f o r

00160 -- t h e b i r t h y e a r o f t h e u s e r .

00170 --

00180 , BIRTH-YEAR : INTEGER;

00190 --

00200 begin

00210 --
00220 SCREEN-CLR ;
00230 --

00240 SET-COL (5) ;

00250 --
00260 PUT (" P l e a s e e n t e r y o u r n a m e : ") ;

00270 --

00280 SET-ROW (8) ; SET-COL (4) ;

00290 --

00300 GET (NAME) ;

00310 --

Abacua Software ADA Training Courae

00320 NEW-LINE; PUT (" Your name is : ") ;

00330 PUT (NAME) ;

00340 --
00350 NEW-LINE (3);

00360 PUT (I' Please enter the year or your birth: ") ;

00370 --
00380 NEW-LINE; SET-COL (4); get (BIRTH-YEAR) ;

00390 NEW-LINE (2);

00400 PUT-LINE (" You were born in the year : ") ;

00410 PUT (BIRTH-YEAR) ;

00420 --

00430 end DATA-IN-DATA-OUT ;

As you have noticed, more than one instruction may be

placed on a line in Ada. The semicolon separates the

instructions from each other. You should make sure that the

program does not become too cluttered. In some cases it is

even advisable to place inetructions which belong together

on a single line.

Bxerciae

The solution has the program name "output 2".

Write a program which asks for your body weight and then

outputs this again.

Abacum Software ADA Tra in ing Courme

(this page left blank intentionally}

Abacus Software

9. Value assignment

ADA Training Courme

Ada is a strongly-typed language, which means that a data

object of a certain type may only be assigned values which

are compatible with that type. A variable of type integer

may not be assigned a floating-point value because the

floating point value would first have to be converted to an

integer before the assignment. The individual types are

logically distinguished. Not only variables but also

operations such as addition, multiplication, etc. are

logically distinguished by type.

Nevertheless, it is often neceasary to assign the value of

an integer variable to a floating-point variable, for

example. The value of the integer variable must first be

converted to a floating-point value. You can convert the

(V values of integer variables to floating-point variables and

vice versa. How this is done will be explained later.

First we want to see what a value assignment in Ada looks

like.

Examples:

SAM : = TOM + 2;

We assume that both SAM and TOM are data objects of the

same type. If this were not the case, the compiler would

tell us so. On the left side of the value assignment stands

the data object whose value will be changed. Then follows a

colon and the equals sign. This character combination can be

read as "receives the value of . " The " . - " - tells the

Abacus Software ADA Training Courae

compiler that this instruction is an assignment. On the

right side is an arithmetic expression. At the end follows

the semicolon which signals the end of the instruction.
In

our example the data object SAM is assigned the value of the

data object TOM, plus 2.

Exponents in Ada are designated by the string "**".

Conversion:

Floating-point values can be converted to integer values

with the following construction:

INTEGER (floating-point value)

The value of the data object used in place of "floating-

point value" is converted to type integer.

The opposite conversion of an integer value to a floating-

point value is accomplished with:

FLOAT (integer value)

Example:

ERIKA is a data object of type integer and JOHN is a data

object of type FLOAT. ERIKA is to be assigned the value of

JOHN, therefore JOHN must be converted to an integer:

ERIKA : = INTEGER (JOHN) ;

This covers the value assignment of types float and integer, ' a d

but what about the value assignments of type string?

A b a c u s S o f t w a r e ADA T r a i n i n g C o u r s e

V a l u e a s s i g n m e n t w i t h d a t a t y p e s t r i n g :

H e r e t h i n g s a r e d o n e a b i t d i f f e r e n t l y t h a n u s u a l . D a t a
"w

o b j e c t s o f t y p e s t r i n g h a v e a l e n g t h o f 8 0 c h a r a c t e r s . The

c o m p i l e r r e s e r v e s t h i s s p a c e i n memory. I t c a n t h e r e f o r e

a c c e s s t h e i n d i v i d u a l s t r i n g s v e r y q u i c k l y b e c a u s e i t d o e s

n o t h a v e t o s e a r c h f o r memory.

We c a n r e p r e s e n t e v e r y s t r i n g v a r i a b l e i n t h e f o l l o w i n g

f o r m : NAME (1 . 8 0 . T h i s m e a n s t h a t we c a n a c c e s s t h e

p l a c e s 1 t h r o u g h 8 0 f o r t h i s v a r i a b l e . I f , f o r e x a m p l e , we

w a n t t o f i l l p o s i t i o n s 1 t o 1 0 w i t h a c e r t a i n s t r i n g , we d o

i t a s f o l l o w s :

PETER (1 . . 1 0) : = " a b c d e f g h i j " ;

A t t h e s t a r t o f t h e p r o g r a m e x e c u t i o n , a l l s t r i n g v a r i a b l e s

iY a r e f i l l e d w i t h b i n a r y n u l l s s o t h a t t h e y a r e c o n s i d e r e d t o

b e e m p t y . I f y o u w a n t t o r e t u r n a s t r i n g t o i t s i n i t i a l

c o n d i t i o n , e n t e r t h e f o l l o w i n g command:

PETER (1 . . 8 0) : = " " ;

The f o l l o w i n g p r o c e d u r e i s u s e d t o a s s i g n s t r i n g v a r i a b l e s

w i t h t h e v a l u e s o f o t h e r s t r i n g v a r i a b l e s :

PETER (5 . . 1 5) : = EDWARD (3 . . 1 3) ;

H e r e t h e s t r i n g v a r i a b l e PETER a t p o s i t i o n 5 is a s s i g n e d t h e

v a l u e o f t h e s t r i n g v a r i a b l e EDWARD a t p o s i t i o n 3 . E l e v e n

c h a r a c t e r s a r e c o p i e d .

w

Abacus Software ADA Training Course

If the receiving string is shorter than the sender, the

copied string will be truncated. If the receiving string is

longer than that sent, the string copied is padded with

blanks.
'd

Exercise

The solution has the name "VALUE ASSIGNMENT".

Write a program which perform the following task:

A merchant sells diskettes and wants a program that will

write a bill giving him the total of the purchase, including

sales tax. The name of the customer must also be on the bill

in order to keep the finances straight. Below is a sample

bill. Try to use everything you learned in this section.

Sample bill:

Sam Harris

10 diskettes at a price of

4% sales tax

bought on 10/05/84

$ 29.95

1.20

Abacus Software ADA Training Courme

10. Function.:

A number of numeric functions which support the operating

system have been implemented in the CBM 64 package.

The operand, the variable or constant, used for these

functions can be of type float or integer. The syntactic

form is the same for all of the functions. Simply replace

"function name" with the actual name of the function.

Command construction:

VARIABLE-1 := function name (VARIABLE-2) ;

Examples:

w
SQUARE-ROOT : = SQR (TOW 1;
SQUARE-ROOT : = SQR (4);

The functions:

Function: AB S

The absolute value of the argument (operand) is calculated.

Abacum Software ADA Training Courms

Function: ATN

The arctangent of the operand is calculated. The operand is

given in radians. w

Function: COS

Returns the cosine of the value given in radians.

Function: EXP

Returns the value e ** operand in which e=2.71827183.

Function: I NT

w
The "INT" of a value returns its integer portion (greatest

integer function). For example, INT (2.34) is 2, while INT

(-4.6) is 5.

Function: LOG

"LOG" returns the natural logarithm (base e).

Function: PEEK

Returns the contents of the given memory location.

Abacum Software ADA Training Course

Function: END

"RND" returns a random number depending on the value of the

argument. If the argument is negative, a new set of random

numbers is produced. This set is dependent on the negative

number, so the same negative value produces the same set of

numbers. If the value is greater than or equal to zero, a

new number will be generated.

Function: SGN

Returns the following values:

-1 if the argument is less than zero.

0 if the argument is equal to zero.

+1 if the argument is greater than zero.

w
Function: S I N

Returns the sine of the angle given in radians.

Function: SQR

The square root of the value is calculated. The argument

must be positive.

Function: TAN

The tangent of the angle given in radians is the result.

Abacum Software ADA Training Course

{this page left blank intentionally}

Abacus Sof twara

11. Deciuion Making

ADA Training Course

*v Ada is a block-structured language. Instructions which

logically belong together are collected together into a

block. For example, we write the keyword at the beginning of

the executable instructions and the word end at the end of

the program. The instructions in between belong to a

program, they form a block.

Up to now we have only concerned ourselves with programs

which are executed sequentially, meaning that we do not know

how to make a program execute its instructions in an order

other than one pass through all of them, one after the

other. In our previous programs, each instruction was

executed exactly once. We could not skip any instructions.

-One often faces the problem of having to choose between two

sets of instructions based on a condition. In English we

would formulate this as follows: "If the condition is

fulfilled, then execute these instructions, else execute

this other set." Two different instruction blocks exist

which make up the structure of this program portion. One

speaks of structured programming if such structures

determine the program. An additional method of structuring

programs involves loops, which we will discuss in the next

section.

Abacus Software ADA Training Course

What does a condition in Ada look like?

Example:

if HAL > 0 then
- -

-- A set of instructions
-- can be placed here.

-- It will be referred to as block-1.
- -
else
--

-- Instructions for block-2 can be

-- placed here.
--

end if;

We can clearly recognize two blocks. At least one statement w
must be placed in each block, even if it is just the empty

instruction null.

The decision statement begins with the keyword if. Then

follows the condition which determines the branch to the

individual blocks. If the condition is fulfilled, in our

case if the value of HAL is greater than 0, the first block

is executed. The first block is comprised of statements from

the if statement to the else statement. Here the program

execution branches to the instruction following the end of

the decision end if;.

If the condition was not fulfilled, the instructions in

block-2 are executed. 'uv

Abacus Sof tware ADA Tra in ing Course

If no instructions are necessary for block-2, we can place

the instruction n u l l ; there. Another possibility is to leave

off this block altogether.

-w
i f HAL > O then

-- instruction block

end if ;

Do not forget the semicolon after the end i f because the

conditional is also a statement in Ada and must be separated

from following statements by the semicolon.

The following operators are available for forming the

condition:

Operator Meaning

equal t o

n o t equal to

s t r i c t l y less than

l e n s than o r equal t o

s t r i c t l y g r e a t e r than

g r e a t e r than o r equal t o

Exercise

Ask the user if the sentence "Block structures are great!"

should be sent to the screen or printer and then do so. The

w solution has the name "DECISIONS".

Abecua Software ADA Training Courae

(this page left blank intentionally)

Abacus Sof t rare

13. LOOPS

ADA Training Course

The l o o p s t r u c t u r e is u s e d t o e x e c u t e a b l o c k o f

p, i n s t r u c t i o n e more t h a n o n c e w i t h o u t h a v i n g t o r e t y p e t h e

b l o c k . L e t ' s l o o k f i r s t a t t h e e n d l e s s l o o p .

loop

-- A s e q u e n c e o f i n s t r u c t i o n s

end loop;

I n Ada o n e c a l l s t h i e c o n s t r u c t i o n t h e " b a s i c l o o p . " T h i s

i s t h e s i m p l e s t f o r m o f a l o o p , b u t a l s o t h e o n e you w i l l

n e e d t h e l e a s t . Once y o u a r e i n t h i s l o o p you c a n c a r r y o u t

t h e s e q u e n c e o f g i v e n i n s t r u c t i o n s a s l o n g as you w a n t u n t i l

t h e c o m p u t e r i s t u r n e d o f f . Your c o m p u t e r makes u s e o f s u c h

a l o o p when i t is t u r n e d o n . I t w a i t s f o r a command f r o m y o u

a n d r e t u r n s a g a i n t o t h e l o o p when i t h a s c a r r i e d o u t t h e

command. T h i s i n t e r p r e t a t i o n l o o p is t h e p r i n c i p a l

s t r u c t u r e i n t h e c o m p u t e r a n d a l l o t h e r s t r u c t u r e s a r e

s u b o r d i n a t e t o i t . T h i s l o o p r e a d s t h e k e y b o a r d , i t w i l l

n o t d o you a n y good t o e s c a p e f r o m t h i s l o o p .

Abacua Software ADA Training Courae

It is possible to escape from an endless loop in Ada with

the following command:

exit loopname when condition;

This instruction means exit the loop with the name

"loopname" when the condition is fulfilled. This condition

is similar to a BASIC IF statement. Bow do we give a name

to a loop?

Example:

ROUND: loop
--
--

--

-- A sequence of instructions
--

- -

exit ROUND when A / = B ;
--

-- A Not Equal To B "A / = B"

-- A sequence of instructions

end loop ROUND;

Abacus Software ADA Training Course

You must write the name of the loop in at least two places:

before the keyword loop, followed by a colon, and after the

keywords end and loop, followed by a semicolon. In our

w example the loop "ROUND" will be exited if the value of A is

different from the value of B, then the exit statement is

executed. The program execution will pick up again after the

instruction "end loop ROUND;".

Take a look at the following example:

OUTSIDE : loop
- -
-- A sequence of instructions
- -

INSIDE : loop
- -

-- A sequence of instructions
- -

- -
exit OUTSIDE when MU < 3;

- -

-- A sequence of instructions
- -
end loop INSIDE ;
- -

- -
end loop OUTSIDE;

L* Both loops can be exited by proper selection of the exit

criteria in the inner loop.

Abacus Software ADA Training Course

If you want to run through a loop only a few times, Ada

offers the following possibility:

Example:

f o r I i n 1..10 loop

-- the sequence of instructions which is to

-- be executed ten times.

end loop ;

The loop parameter, in our case "I", can only be read within

the loop. Upon entry into the loop the parameters will be

defined, and will cease to exist after the completion of the

loop. In our case the loop parameter assumes the values,

one after another: 1,2,3,4,5,6,7,8,9,10. The loop will be

carried out ten times.

Abacua Software

BXBBCISB

ADA Training Courae

You will find the auggeated solution under the name "loop"

on the Ada Training Course diskette and in section 27.

Problem Solutions.

Write a program that prints all the even numbers up to

100, and then all the odd numbers from 100 to 200. The

output ahould be commented.

Abacum Software ADA Training Courms

{This page left blank intentionally)

Abacus Software

13. Jumps

ADA Training Course

Have you already missed the goto command? I believe that

this command is unnecessary, because in principle all the

problems can be solved with sequential procedures,

conditionals, and loops. But there is also a "goto" command

in Ada. You must indicate the place in the program to which

you would like to S u p . There are no line numbers in Ada

like there are in Basic. The provision for such jump

destination markers is as follows:

< < JUMP LABEL > >

In place of JUMP LABEL insert a name of your own. A jump

label can be inserted before any instruction in the

executable part of your program. The goto instruction has

W the following construction:

goto JUMP LABEL;

I probably don't need to put an exercise here for you, an

example of the goto command may be found in the program

named DEMO on the Ada diskette. DEMO.OBJ is the compiled

and assembled version of the DEMO program, you may simple

load and run this program.

Abacus Software ADA Training Course

{This page left blank intentionally}

Abacus Software ADA Training Course

14. The Operation of the Compiler

A s e c t i o n n o t j u s t f o r e x p e r t s

S u r e l y you h a v e a s k e d y o u r s e l f what a c t u a l l y h a p p e n s a f t e r

you h a v e t o l d t h e e d i t o r t o c o m p i l e a p rog ram. I w i l l a n s w e r

t h i s on t h e n e x t p a g e s . F o r m e t h i s i s o n e o f t h e most

i n t e r e s t i n g p a r t s o f d a t a p r o c e s s i n g . I f i n d i t s i m p l y

f a s c i n a t i n g t o d i s c o v e r t h e means by w h i c h a mach ine is i n

a p o s i t i o n t o a n a l y z e a l a n g u a g e .

A f ew t h i n g s t o c o n s i d e r : If you want t o e x p r e s s s o m e t h i n g

i n a l a n g u a g e , you p u t t h e words t o g e t h e r i n s e n t e n c e s . You

do t h i s w h e t h e r you are s p e a k i n g E n g l i s h o r w r i t i n g a

p rog ram i n Ada. By words i n Ada w e mean keywords , s p e c i a l

c h a r a c t e r s , and names. The p r o g r a m s w h i c h you p a s s on t o
kW t h e Ada c o m p i l e r a re n o t h i n g o t h e r t h a n Ada s e n t e n c e s .

Ada is a n a r t i f i c i a l l y c r e a t e d l a n g u a g e , b u t n e v e r t h e l e s s i t

is a l a n g u a g e w h i c h is i n t h e p o s i t i o n t o form a n e n d l e s s

number o f s e n t e n c e s . I f you want t o t a k e o n l y a c e r t a i n

l e n g t h f o r y o u r p r o g r a m s , t h e n you c a n s e t a maximum l e n g t h

o f 5000 s e n t e n c e s . I am c o n v i n c e d t h a t t h e Ada c o m p i l e r

i n t h i s Ada t r a i n i n g c o u r s e s c a n n e v e r come i n c o n t a c t

w i t h a l l t h e p o s s i b l e p r o g r a m s o f t h i s l e n g t h .

Even more s u r p r i s i n g is t h e f a c t t h a t i t is p o s s i b l e t o

wr i t e a p rog ram (t h e Ada c o m p i l e r) t h a t c a n a n a l y z e a n d

c o m p i l e a l l t h e s e s e n t e n c e s . You w i l l p e r h a p s s a y t h a t

t h i s c a n n o t b e t h a t d i f f i c u l t , b e c a u s e o u r l a n g u a g e is b a s e d

.w on c l e a r c u t , d e f i n i t e r u l e s . We n e e d o n l y t o w r i t e a

p rog ram t h a t knows t h e s e r u l e s and a n a l y z e s o u r s e n t e n c e s

Abacum Software ADA Training Courme

f o l l o w i n g t h e s e r u l e s . E a s i e r s a i d t h a n d o n e ! Do you h a v e

a l l t h e r u l e s i n y o u r h e a d ? O r d o you o f t e n h a v e t o l o o k

t h e s e t h i n g s u p , a s I do? Have you d e v e l o p e d c e r t a i n

m e t h o d s wh ich you f o l l o w when you c h e c k w h e t h e r t h e p rog ram
.99p

i s i n k e e p i n g w i t h t h e r u l e s ?

Now, a c c o r d i n g t o wh ich me thods d o e s t h e c o m p i l e r o f

p rog ramming l a n g u a g e s p r o c e e d ? You w i l l g e t t o know t h e

me thods w h i c h t h e Ada-compi l e r p r o c e e d s . Programming

l a n g u a g e s a r e c o m p i l e d u s i n g t h e s e m e t h o d s , s o d o n ' t

q u i c k l y f o r g e t what I t e l l you b u t k e e p i t i n t h e b a c k o f

y o u r mind , f o r i t w i l l c l a r i f y many m e s s a g e s t h e c o m p u t e r i s

g i v i n g you.

P e r h a p s you a s k why I w r i t e a b o u t p rog ram a n a l y s i s when a l l

w e want i s t o c o m p i l e t h e p r o g r a m s . You w i l l see t h a t t h e

i n f o r m a t i o n we n e e d i n o r d e r t o c o m p i l e a p rog ram w i l l b e

o b t a i n e d by p rog ram a n a l y s i s . I t i s n o t e w o r t h y t h a t t h e p4

c o m p u t e r r e q u i r e s more t i m e f o r t h e a n a l y s i s o f y o u r p r o g r a m

t h a n f o r t h e p r o d u c t i o n o f t h e w o r k a b l e m a c h i n e l a n g u a g e

p rog ram.

The p rog ram a n a l y s i s c a n b e d i v i d e d i n t o t h r e e m a j o r p a r t s

wh ich a r e e x e c u t e d o n e a f t e r t h e o t h e r on t h e C B M - 6 4 . I f

more memory w e r e a v a i l a b l e t h e s e p a r t s c o u l d b e e x e c u t e d i n

p a r a l l e l t o e a c h o t h e r w i t h o u t h a v i n g t o s a v e t h e d a t a on

t h e d i s k e t t e . S a v i n g t h e d a t a n a t u r a l l y t a k e s t i m e , a n d

you c a n c u t down on t h i s t i m e i n l a r g e r c o m p u t e r s y s t e m s by

t h e p a r a l l e l e x e c u t i o n o f t h e t h r e e p a r t s .

Abacus Software ADA Training Course

The three parts of the analysis are:

1) The lexical analysis

2) The syntactical analysis

3) The semantic analysis

The subjects of parts 1-3 can be roughly summarized as

f 01 lows:

The lexical analysis should recognize particular words of

the program and filter out the words which don't make sense

in Ada.

The syntactical analysis should examine whether a program

follows the grammatical rules of Ada. We will later learn

what this grammar is like.

The semantic analysis checks whether your program basically

makes sense and whether you've followed the rules which in

the previous examinations had not been detected.

As you've already recognized, the Ada program goes through

ever closer examinations. If the compiler recognizes

mistakes in syntax, then a semantic examination is no longer

necessary. We'll overlook these points in particular until

they' re understandable.

Abacus Software ADA Training Course

{This page left blank intentionally)

Abacum Software ADA Training Courme

15. The Lexical Analymim

A program which executes a lexical check is called a - 11 scanner". The strongest ally with the lexical examination

in our case is the editor. The scanner's job is to take only

the characters which result in a sensible Ada-program.

We call upon the scanner when we use the function "Compile

the program" from the editor. The scanner is part of the

editing program and is already located in the memory of the

computer.

The task of the scanner is to put our program into a

"standard form" which can be processed by the succeeding

program, which executes the syntactical test. To do that

the scanner takes all of the comments out of our program

because they are only for our benefit and are not needed by

the compiler. If spaces appear in the program they are

removed. This does not apply to spaces in character

strings. The scanner prints out the line numbers of the

program and changes all the uppercase letters into

lowercase. Its main task however is to break the program

into Ada words.

What are then all of the Ada words?

1) Ada keywords, i.e. l oop , procedure, etc.

2) The identifiers of the programs

3) The separators, i.e. = , > , etc.

Abacus S o f t w a r e ADA T r a i n i n g Courme

How d o e s t h e s c a n n e r go a b o u t t h i s ? I t r e a d s t h e p rogram

c h a r a c t e r by c h a r a c t e r u n t i l i t e n c o u n t e r s o n e o f t h e

f o l l o w i n g c a s e s :

(a) A comment f o l l o w s (- -)

(b) A s p a c e f o l l o w s

(c) A s e p a r a t o r f o l l o w s

(d) The e n d o f t h e l i n e i s r e a c h e d

When i t r e a c h e s o n e o f t h e s e i t knows t h a t t h e s e q u e n c e o f

c h a r a c t e r s r e a d was a n Ada word.

An example :

The p rogram s h a l l b e :

00010 p r o c e d u r e LEX-EXAMPLE is

00020 -- Example 1 f o r l e x i c a l a n a l y s i s

00030 A,B : INTEGER ;

00040 b e g i n

00050 A : = B;

00060 e n d LEX-EXAMPLE ;

L i n e 00010:

The l i n e number 00010 w i l l b e p r i n t e d . The s c a n n e r

r e a d s o v e r t h e s p a c e s a f t e r t h e l i n e number , t h e n

r e a d s p r o c e d u r e and r e c o g n i z e s t h e s p a c e f o l l o w i n g

i t . I t e n t e r s c a s e (b) . The s c a n n e r knows t h a t

p r o c e d u r e is an Ada word. I t d o e s o n e more t h i n g

t h o u g h : i t d e t e r m i n e s w h e t h e r i t i s a keyword o r

w h e t h e r i t i s d e a l i n g w i t h a word s e l e c t e d b y t h e

u s e r . When p r o c e d u r e i s a keyword, a c o d e d message

Abacus S o f t w a r e A D A T r a i n i n g C o u r s e

w i l l b e g e n e r a t e d . T h i s m e s s a g e h a s t h e f o l l o w i n g

c o n t e n t s : He re comes a keyword . The keyword is

p r o c e d u r e . T h i s m e s s a g e is i n r e a l i t y o n l y two

c h a r a c t e r s l o n g a n d c a n b e i n t e r p r e t e d by t h e

f o l l o w i n g a n a l y s i s p rog ram. We c a n r e c o g n i z e t h e

mean ing o f t h i s a c t i o n when w e t a l k a b o u t t h e

s y n t a c t i c a l a n a l y s i s .

The s p a c e s a f t e r p r o c e d u r e w i l l n o t b e p r i n t e d .

The s c a n n e r t h e n r e a d s "LEX-EXAMPLE", r e c o g n i z e s

t h e s p a c e , n o t i c e s t h a t t h e word i s n o t a keyword

a n d o u t p u t s i n l o w e r c a s e l e t t e r s " l e x - e x a m p l e " .

With t h e keyword is c a s e (d) o c c u r s , t h e end o f t h e

l i n e i s r e a c h e d . The s c a n n e r p r i n t s a

c o r r e s p o n d i n g message a s f o r p r o c e d u r e and moves t o

t h e n e x t l i n e .

L i n e 00020:

The l i n e number 00020 w i l l b e p r i n t e d . Then a

comment f o l l o w s , r e c o g n i z a b l e by t h e two minus

s i g n s (- a n d t h e rest o f t h e l i n e w i l l b e

s k i p p e d o v e r .

L i n e 00030:

The l i n e number 00030 w i l l b e p r i n t e d . The

f o l l o w i n g s p a c e s w i l l o v e r l o o k e d . S i n c e a comma,

a l s o a s e p a r a t o r , f o l l o w s "A," a word e n d s h e r e .

The s c a n n e r r e c o g n i z e s i t a s o n e c h o s e n by t h e u s e r

a n d p r i n t s " a " . And s o o n . . .

Abacus Software

Lines 00040 - 00060:

ADA Training Course

Nothing more will be said about these lines since

we have already covered all of the cases. But you

should "scan" over these lines for practice.

Upon completion the scanner prints the message that the

program is finished and instructs you to insert the

distribution disk.

Abacum S o f t w a r e ADA T r a i n i n g C o u r e e

16. The S y n t a c t i c a l Analymie

I.rr
The p rogram t h a t is r e s p o n s i b l e f o r t h e s y n t a c t i c a l a n a l y s i s

is c a l l e d t h e P a r s e r .

The Ada-Pa r se r is t h e p a r s e r c a l l e d b y t h e s c a n n e r a f t e r i t s

work h a s b e e n c a r r i e d o u t . The p a r s e r r e a d s t h e o u t p u t o f

t h e s c a n n e r a n d c h e c k s t h e p rogram f o r s y n t a c t i c a l a c c u r a c y .

F i r s t w e w i l l c l a r i f y what i s meant when a p rogram is

s y n t a c t i c a l l y c o r r e c t . E v e r y l a n g u a g e is b a s e d on c e r t a i n

r u l e s , wh ich d e t e r m i n e how s e n t e n c e s a r e fo rmed o u t o f

words . A c o l l e c t i o n o f s u c h r u l e s is c a l l e d grammar. Most

o f o u r r e c o l l e c t i o n s o f grammar come f rom s c h o o l , b u t h a v e

n o f e a r b e c a u s e i n programming l a n g u a g e s t h e grammar is much

e a s i e r t o u n d e r s t a n d t h a n t h a t f o r o t h e r l a n g u a g e s l i k e

E n g l i s h . The r e a s o n f o r t h i s i s t h a t w i t h n a t u r a l l a n g u a g e s

w e must i n f e r t h e r u l e s f rom t h e l a n g u a g e . One e x a m i n e s f o r

example a t h o u s a n d E n g l i s h s e n t e n c e s a n d t r i e s t o u n d e r s t a n d

t h e c o n s t r u c t i o n o f t h e s e s e n t e n c e s i n terms o f r u l e s . I f

you a d d t o t h e t h o u s a n d s e n t e n c e s you w i l l p r o b a b l y h a v e t o

a d d new a n d d i f f e r e n t r u l e s a s w e l l . We c a n n e v e r b e s u r e

t h a t w e h a v e f o u n d a l l t h e r u l e s . Of c o u r s e t h e r e a r e

a l w a y s e x c e p t i o n s t o t h e r u l e s .

T h i s method i s n o t p o s s i b l e f o r programming l a n g u a g e s

b e c a u s e t h e p e o p l e who w r i t e t h e c o m p i l e r d o n ' t know which

p r o g r a m s t h e u s e r w i l l d e v i s e l a t e r . The o p p o s i t e c o u r s e c a n

a l s o b e t a k e n . W e f i r s t d e f i n e what t h e programming

l a n g u a g e s h o u l d d o a n d t h e n t h e grammar is d e v e l o p e d . - S e n t e n c e s u s i n g c o r r e c t grammar a r e s y n t a c t i c a l l y c o r r e c t ,

a l l o t h e r s w i l l n o t b e a c c e p t e d b y t h e p a r s e r .

Abacus Software ADA Training Courme

In reality the way of proceeding is somewhat more

complicated. One would think that once the grammar has been

worked out that the parser should be able to work with this

grammar. Not all grammar can be processed by every parser,
w

however. The grammar must either be adapted to the parser

or the parser to the grammar. Unfortunately there are

restrictions on the side of the computer because different

parsers require varying amounts of memory space and

compiling time.

With the Ada Training Course compiler I have proceeded as

follows: I have sought a method for the parser which

requires as little memory as possible. Then I devised the

parser and rewrote the Ada grammar so that it is more

workable. This can be said in two sentences, but it

required a great deal of time spent in working out the

details since the inconsistency of the new grammar became

noticeable only after a great deal of computation.
w

How does the parser check a program for syntactical

accuracy? There are many different methods for doing so.

I'd like to present those that the Ada compiler uses. In

the literature these methods are known as LL(1) - parsing.

Before we can understand them a few considerations are

necessary. So that these don't become much too dry, let's

get acquainted with these methods by means of an example.

Abacus Software ADA Training Courme

16.1 The LL(1) Pleamure Garden Part 1:

u We t a k e a s p a c i o u s g a r d e n w h i c h we w i l l c a l l t h e L L (1)

P l e a s u r e G a r d e n . W i t h i n t h i s g a r d e n t h e r e is a n a r r a y o f

a m u s e m e n t s s u c h as c a r r o u s e l s , w a t e r g a m e s , o l d s t a t u e s ,

e t c . By e v e r y s c e n e s t a n d s a m a i l b o x w i t h a n i n s c r i p t i o n ,

d e s i g n a t i n g t h e a m u s e m e n t . F u r t h e r i n t h e p a r k i s a w h o l e

se t o f p a t h s a n d a t t h e i r i n t e r s e c t i o n s , m a r k e r s d i r e c t i n g

t h e way t o t h e n e x t a t t r a c t i o n s . We'll i m a g i n e t h a t o u r

S u n d a y w a l k l e a d s u s i n t o t h i s p l e a s u r e g a r d e n . A t t h e

e n t r a n c e we r e c e i v e a p a c k a g e w i t h c a r d s w h i c h w i l l mark o u t

o u r w a l k t h r o u g h t h e g a r d e n . W e t u r n u p t h e t o p c a r d a n d

f o l l o w t h e s i g n s . F o r e x a m p l e , c a r d 1:" " m o n k e y h o u s e " . W e

f o l l o w t h e s i g n s w h i c h a r e a t t h e e n t r a n c e a n d s h o w u s t h e

way. A r r i v i n g a t t h e m o n k e y h o u s e we s e e a m a i l b o x l a b e l e d

" m o n k e y h o u s e " i n w h i c h t o p u t o u r c a r d . A f t e r w e ' v e l o o k e d

a r o u n d we t u r n u p t h e n e x t c a r d a n d f o l l o w t h e r e s p e c t i v e

kW i n s t r u c t i o n s . S o we w a n d e r t h r o u g h t h e g a r d e n u n t i l w e t u r n

u p t h e c a r d w i t h e x i t w r i t t e n o n i t , a n d t h e w a l k e n d s

t h e r e .

Back t o t h e a n a l y s i s o f o u r p r o g r a m l a n g u a g e : t h e d e c k o f

c a r d s r e p r e s e n t s o u r p r o g r a m a n d o n e v e r y c a r d i s a w o r d o f

t h e p r o g r a m . The g a r d e n is t h e grammar a c c o r d i n g t o w h i c h

t h e p r o g r a m s h o u l d b e w r i t t e n , a n d t h e p a t h s t h r o u g h t h e

g a r d e n a r e t h e g r a m m a t i c a l r u l e s . I n t h e s e c t i o n " 1 9 . Ada

Grammar'' y o u w i l l f i n d a c o m p l e t e l is t o f a p p l i c a b l e g rammar

w i t h a n i n d e x .

W e w i l l move t h r o u g h o n e c a s e a n d p a r s e r t h e f o l l o w i n g s m a l l

p r o g r a m .
w

Abacus S o f t w a r e ADA T r a i n i n g C o u r s e

p r o c e d u r e A i a

b e g i n

n u l l ;

end A;

We imagine t h e keywords p r o c e d u r e , i s , b e g i n and end i n

coded form and imagine t h e empty s p a c e s a s n o t b e i n g t h e r e ,

t h i s is t h e form o f t h e program t h a t t h e p a r s e r r e c e i v e s

from t h e s c a n n e r .

A f t e r t h e p a r s e r h a s been l o a d e d and s t a r t e d , t h e p a r s e r

program r u n s t h r o u g h an i n i t i a l i z a t i o n p h a s e . Here t h e

p a r s e r p r e p a r e s i t s e l f f o r i ts work. The f i r s t r u l e s o f t h e

grammar w i l l b e r e a d a l o n g w i t h o t h e r s which e v e r y program

must f u l f i l l . These r u l e s c h a r a c t e r i z e t h e e n t i r e " f u t u r e "
'd

o f o u r Ada programs.

The r u l e s r e a d : c o m p i l a t i o n : : = c o m p i l a t i o n - 1 E-0-F . The

name o f t h e r u l e is " c o m p i l a t i o n " . The name is t h e l e f t

p a r t of t h e r u l e , t h e p a r t which s t a n d s b e f o r e t h e ' I : :=" .

On t h e r i g h t s i d e a r e two d i f f e r e n t t y p e s o f words: One

t y p e i s t h e name o f o t h e r r u l e s and t h e o t h e r c o n s i s t s o f

Ada words.

T h i s a p p l i e s w i t h t h r e e e x c e p t i o n s :

1) The word E-0-F i n d i c a t e s t h e end o f t h e

program; t h e s c a n n e r a d d s t h i s word t o o u r program.

Abacua Software ADA Training Course

2) If there are rule alternatives they are

separated from one another by the character " : " .
Alternatives mean that the rules are allowed to

split up into more cases. This will soon become

apparent on its own.

3) If an alternative is empty ,it can be

identified by an upper case "L1'. An empty

alternative in a rule means that the rule cannot be

used.

To "apply" a rule means to replace the name of the rule with

the right aide of the definition of that rule. The choice

of a blank alternative means that the name is simply erased.

The application of the rule "compilation" results in the

following: First we must use the rule "compilation-1",

iV followed by the word E-0-F. If the word "E-0-F" doesn't

appear then the parser will interpret it aa an error.

Flow then does the rule "compilation-1" appear? It

appears as:

compilation-1 : : = context-clause compilation-unit

compilation-1

L

The uae of "compilation-1" allows us two possibilities:

1) The use of the first series, which begins with

"context-clause";

2) The use of the second line, the empty rule.

Abacum Software ADA Training Courme

We will consider case 2: we would be finished with the rule

"compilation-1" and return to the rule "compilation". Now

the word E-0-F follows which means that at the beginning of

the program the information must have been given that the
'rP

program is already at the end. We proceed through the

grammar in this manner if we want to compile an Ada program,

which does not consist of any instructions. The parser in

this case follows the motto "He who does nothing also makes

no mistakes". We are working with our program, however, eo

we must take case 1.

Case 1 begins with "context-clause". Let's look at this

rule:

context-clause : : = "with" identifier with-1 " ;"

context-2 context-clause I L

Line 1 begins with the word "with". To be able to choose Uf

this alternative we must have begun our program with "with".

Now there remains only line 2 with the blank empty

alternative. The rule "context-clause" is thus processed.

How does this appear in the "bookkeeping" of the parser? It

has not yet noticed this still unprocessed rule and has

marked the corresponding substitutions. For the program

then it has:

compilation : : = compilation-unit compilation-1 E-0-F

Back to the rule "compilation-1": the next working

rule is "compilation-unit".

Abacus Software ADA Training Course

compilation-unit : : = "procedure" identifier formal-part

subprogram-spe

"package" package-se

Our program begins with "procedure", therefore we choose

alternative 1. We have found an applicable rule and

can view the first word in our program as processed. We

move on to the next word. This is "a"". We work out

further the rules of "compilation-unit". In the meantime we

must notice the rest of the rules not yet worked out for

compilition. There we must again take up the work when we

are finished with the rule. You may think that this could

go on forever, but it eventually does come to an end,

although this may come after a few hundred steps for even a

small program. That is much too much to execute by hand but

the computer performs this work faithfully and diligently.

In the section "17. Watching the parser do its work" you

will find a complete record of our small program. You

should go through this record once becauee it will clear up

any questions you might still have.

One question I have not dealt with as of yet will lead us

into a new section: Suppose the parser comes to a rule with

several alternatives, none of which begin with an Ada word.

Which alternative does the parser follow and according to

which criteria does it proceed? For each alternative in

every rule one can determine which words can occur if a

given alternative is selected and followed. I will list the

words which are possible and are an alternative to the

rule in the following group of words because they fall under

the same category and have similar characteristics. We know

Abacus Software ADA Training Course

that every time we need to find a word it is always the word

that we last encountered. In the LL(1) pleasure garden

this was always the card which we had uncovered and which

gave us an intermediate destination on our way. The

mailboxes in our garden are now replaced with the Ada words

in our grammar. The guideposts in our garden are the family

of words from which it is possible to select an alternative

to the rule.

I also owe you an answer to the question of why it is

possible to analyze a program labeled with LL(1) Parsing.

Here is the answer: We always direct our analysis of a

sentence (program) from the furthest word on the left, which

we haven't found yet on our way through the grammar. This

explains the two uppercase "L"s. With the "1" it is a

different matter: In each case it sufficies to see only one

word into the program. Therefore we insert the word

procedure and look for this in the grammar, not needing at *J'

the moment any information about the words in our program

which follow after procedure. At first if we have found

procedure, we need the next word in order to find the rest

of the way through the grammar. Perhaps you've already run

across this case yourself. It is naturally just another set

of analysis procedures for programming languages. You can

read about the most current procedures for analysis in many

publicat ions.

Until now we have just assumed that the programs which we

analyze will be syntactically correct, but that isn't just

exactly what we wanted to find out. Let us return in this

case to the model of our pleasure garden.

Abacum S o f t w a r e ADA T r a i n i n g Courme

1 6 . 2 The LL(1) P l e a m u r e Garden , P a r t 2

We've gone a s t r a y !

We r u n e x c i t e d l y t h r o u g h t h e p l e a s u r e g a r d e n and come t o a

new a t t r a c t i o n . A f t e r we 've amused o u r s e l v e s w i t h i t we

l o o k f o r t h e ma i lbox and th row i n t h e c a r d . We t u r n up t h e

n e x t c a r d , l o o k f o r t h e s i g n s d i r e c t i n g t h e way t o o u r new

g o a l , l o o k i n e v e r y d i r e c t i o n , w h i r l a r o u n d o n c e more and

d e s p a i r ! . We c a n ' t f i n d any s i g n s which show u s t h e r i g h t

d i r e c t i o n i n which t o go .

But what is wrong and how c a n we s a v e o u r s e l v e s ? I t c o u l d

b e t h a t we l o s t a c a r d , o r t h e r e c o u l d b e one t o o many

c a r d s , o r someone c o u l d h a v e mixed i n a wrong c a r d , o r . . .

What do w e do? We assume t h a t t h e m i s t a k e i n t h e c a r d s

w happened e a r l i e r and o n l y j u s t now showed up . Then we h a v e

t o go back and a t a n e a r l i e r c r o s s w a y l o o k f o r o u r

d e s t i n a t i o n . I f we assume a c a r d i s m i s s i n g t h e n we must go

f u r t h e r a n d k e e p a n e y e o u t f o r t h e d e s t i n a t i o n . I f we

d e c i d e t h a t a wrong c a r d h a s been s l i p p e d i n t h e n we s i m p l y

t a k e t h e n e x t o n e and g o on a s u s u a l . What would you do?

Think i t o v e r once . I know y o u ' l l f i n d a n o t h e r way by which

t o c o n t i n u e your walk . W i l l we r e a c h t h e end o r must we

r e s i g n o u r s e l v e s t o g o i n g back t o t h e b e g i n n i n g ? Think o v e r

what method y o u ' r e g o i n g t o u s e and t h i n k a b o u t how t h i s

w i l l b e c a r r i e d o u t by t h e compute r .

We w i l l show how t h i s t a k e s p l a c e i n t h e a n a l y s i s o f o u r

program. The p a r s e r h a s a program which works t h r o u g h t o a

W c e r t a i n p l a c e , f i n d s a keyword o f t h e grammar o r works a t a

r u l e w h e r e i t must move on t o a new word. The p a r s e r

Abacum Software ADA Traioiog Course

tackles a new rule in every case. This rule is determined

by an antecedent, so it can choose only between the

alternatives of this rule. It won't find the new word in

the group of grammar words, so it comes up with an error. We w
must now find another way to continue upon our walk.

Which avenues does the parser have to pursue in continuing

the analysis, and which is the most promising? If the parser

wants to go back on its way through the grammar then it is

important for it to have marked the way. We know that the

analysis of a program can consist of many steps. That

easily requires more memory area than we have available, so

we can eliminate this possibility. The parser has noted the

possible future for our program which limits this future

step by step until only the end symbol is possible. The

parser also has the option of determining which Ada

words should be anticipated in the future. Another

possibility for the parser would be to continue to read our

program until this word has been found. What this means in

our walk through the garden is that we turn over a new card

until we come to a card for which we see a sign. We could

have bad luck with that though and stand at the end with no

cards. The parser in this case would read to the end and

then stop working, which means that the rest of the program

won't be checked for syntactical accuracy.

There are many possibilities which the Parser can make use

of. I'd like to outline for you at the end of this

chapter the one which appears most promising but which

unfortunately cannot be realized on the C-64 because of the

limited memory. Here now are the possibilities for the Ada

Compiler which I feel present themselves in every case as

very good options and can manage with little memory space.

Abacum Software A D A Training Course

Let us suppose that the way through our garden would be

marked out so that a visible trail announced your presence,

and that in our card deck were cards which were marked to be

thrown into the mailboxes along the way. Then I hold the

following way of proceeding to be the most sensible: We go

along until the next intersection and turn up a number of

cards until we reach the card that stands for that

intersection. From that card it is very probable that we

will be able to find the rest of the way to our goal. We

relay this to the parser. First comes the question of "What

are the crossroads/intersections in Ada?". You've noticed

how every instruction in Ada is separated with a semicolon.

Therefore what comes closer to a crossroad than a semicolon?

So what is it to forget the semicolon when it only stands as

a "tag" behind our instructions? We suppose then that the

user begins a new instruction on a new line. We take a new

line to be sort of a main intersection. This way of

hu' proceeding will not absolutely guarantee results, but it is

reasonable and promises the greatest results with the

smallest amount of memory allowable.

It is important that we try to make the rest of our program

accessible to a syntactical check. Interpreters, such as the

CBM-64 has, make this task easy because it simply interrupts

the program execution when an error shows up and prints the

meaningless message "Syntax Error". The compiler must read

over the entire program until it reaches the mistake which

is a time consuming process with several errors.

The Ada parser tries next to find the symbol which it has

been looking for next. It looks only until the next

W semicolon or a new line.

Abacus Software ADA Training Courme

Here then is the possibility which I belive to be most

promising: If the the parser comes across a symbol which it

didn't expect, it looks up in the index whether the symbol

has been changed in some way by the user, thereby limiting w
the future of our program. The index takes up a large place

end doesn't fit in the memory of the computer.

We know at the end of the syntactical check whether our

program compiles with the rules of Ada grammar. This test

is a prerequisite for the semantic test, which also locates

the last discrepancies.

In English we know that the sentence "The ducks trills." is

grammatically correct, but does it also make sense?

Abacus Software ADA Training Course

17. Watching t h e parser do its work

We h a v e s e l e c t e d t h e f o l l o w i n g s m a l l program a s a n example :

w
00010 procedure A is

00020 begin

00030 n u l l ;

00040 end A :

I t is o b v i o u s t h a t no one would w r i t e s u c h a program. If we

f o l l o w t h e p a t h o f t h e p a r s e r t h r o u g h t h e grammar we w i l l

s e e t h a t i t i s a l r e a d y l o n g enough t o g i v e u s an i d e a a b o u t

t h e s y n t a c t i c a l a n a l y s i s o f l a r g e r p rograms .

"b.' I n t h i s s e c t i o n we w i l l l e a r n a way t o a n a l y z e a program

f i l l e d w i t h s y n t a c t i c a l e r r o r s . The p a r s e r is o r i e n t a t e d t o

t h e grammar and t h e i n d e x , b o t h o f which you w i l l f i n d i n

t h i s manual .

How d o w e g e t t o know t h e s e t o o l s ? For t h a t we w i l l r u n

t h r o u g h a s m a l l example p rogram. A t t h e end you w i l l s u r e l y

a g r e e t h a t t h i s i s a p l a c e i n d a t a p r o c e s s i n g where one

n e e d s many words t o d e s c r i b e s i m p l e f a c t s .

Every p rogram must f u l f i l l R u l e 001 o f t h e grammar:

0 0 1 c o m p i l a t i o n : : = c o m p i l a t i o n - 1 E-0-F

Abacum Software ADA Training Courme

This means that after the application of the rule

"compilation-1" you can come to the end of the program. The

characters E-0-F stand for the end. These characters lie

in the future of our trip through the grammar and as a 'd
result do not concern us at the moment. Now we mustn't

forget them because we will still need them, so we take note

of these characters.

"How does the Parser do this?" will be your next question.

The parser notes information about the future of a program

in a "memory stack", also just referred to as a "stack".

How does one explain a "stack"? My suggestion is the

following: Let us imagine a skyscraper with 2000 stories.

This is the capacity of the stack in the Ada Parser. In

this skyscraper we find an elevator with only two buttons in

the car. Button 1 goes up a floor and button 2 goes down a

floor. We can deposit information on every floor but we w
can't go from the 999th floor to the 700th floor and look at

the information on them. We can only go one floor up or

down at a time. At first we go into the skyscraper and

naturally find ourselves on "Floor 0 " . And if we go down a

floor we negate all of the information on the last floor. We

will see that this "construction" is sufficient to point out

our way through the grammar. Now E-0-F lies in the future.

Therefore we discard the information from "Floor 0 " and go

up a floor.

We find ourselves now on the second floor and must use rule

002 ("compilation-1").

002 compilation-1 : : = context-clause compilation-unit

compilation-1

Abacus Software ADA Training Couree

Here we have two possibilities:

w
1) We choose 003, but this means that in our

program the ending characters E - 0 - F stand

beginning to end, which is not the case;

2) We use rule 002, which means that we must put

away the information of the future.

l'Compilation-l" put aside, and up another floor.

"Compilation-unit" put aside and up another floor.

Now we can use "context-clauae".

006 context-clause : : = "with" identifier

'v
With these rules we again have two possibilities:

1) Uee of 006 : 006 begins with with. This is an

Ada word and our program must begin with with;

2) If our program doesn't begin with with, we

choose possibility 007. An "L" always means that

this rule is blank. We must then turn to the next

rule that lies in the future of the program.

Therefore we go another floor down, and read the

information. We read "compilation-unit". Now we

must choose this rule:

Abacua S o f t w a r e ADA T r a i n i n g C o u r a e

004 c o m p i l a t i o n - u n i t : : = " p r o c e d u r e " i d e n t i f i e r f o r m a l - p a r t

subprogram-spe

005 : "package" p a c k a g e - s e

Our p rogram c a n b e g i n w i t h t h e Ada words p r o c e d u r e o r

p a c k a g e . I f i t b e g i n s w i t h p r o c e d u r e t h e n we c h o o s e

r u l e 004. We c a n n o t f o r g e t t o s t a r t o u r program w i t h

p r o c e d u r e b e c a u s e i t is a l r e a d y t e s t e d . I ' l l abandon t h e

" e l e v a t o r " and c o n f i n e m y s e l f t o t e l l i n g you which r u l e s

w i l l be c h o s e n by t h e p a r s e r .

P r o d u c t i o n : 060

063

019

0 15

Move t o l i n e 00020 :

043

Move t o l i n e 00030 :

153

157

158

Move t o l i n e 00040 :

155

039

016

060

0 63

003

End o f t h e s y n t a c t i c a l c h e c k .

Abacun Software

1 7 . 1 . Error handling:

ADA Training Course

I f t h e p a r s e r f i n d s a m i s t a k e , t h e p o s s i b i l i t y e x i s t s f o r

u s t o p r i n t t h e s t a c k . The p a r s e r g o e s down w i t h u s f r o m t h e

f l o o r w h e r e i t now is a n d p r i n t s t h e r e s p e c t i v e i n f o r m a t i o n .

I t s h o w s t h e number o f t h e f l o o r a n d a number w h i c h s t a n d s

f o r t h e s t o r e d r u l e s . T h e s e n u m b e r s c o r r e s p o n d t o t h e

number s w h i c h s t a n d b e f o r e t h e names o f t h e r u l e s i n t h e

i n d e x . F o r e x a m p l e , 0 1 0 b l o c k - s t a t e m e n t . H e r e t h e number 1 0

i s shown. The Ada w o r d s are c o d e d i n t h e memory. They are

p r e c e d e d b y t h e number 255 s o t h a t t h e p a r s e r c a n

d i s t i n g u i s h them f r o m t h e r u l e s . The l i s t o f k e y w o r d s i s

f o u n d a t t h e e n d o f t h i s c h a p t e r .

F u r t h e r i n t h e s t a c k is i n f o r m a t i o n w h i c h d i r e c t s t h e p a r s e r

t o c a r r y o u t c e r t a i n work . Your p r o g r a m s h o u l d n o t o n l y

.cy h a v e b e e n c h e c k e d f o r s y n t a c t i c a l a c c u r a c y b u t a l s o l a t e r b e

c o n v e r t e d i n t o a m a c h i n e l a n g u a g e p r o g r a m . S o t h a t t h e

s e m a n t i c a n a l y s i s a n d t h e a s s e m b l e r w i l l b e p r o v i d e d w i t h

t h e n e c e s s a r y i n f o r m a t i o n , t h e grammar is e x p a n d e d i n

c h a r a c t e r s . If t h e s e a p p e a r o n t h e s t a c k , t h e p a r s e r knows

t h a t i t m u s t s u p p l y t h e i n f o r m a t i o n f o r t h e f o l l o w i n g work .

E v e r y o n e o f t h e s e c h a r a c t e r s i s p r e c e d e d b y t h e number 252.

Abacus Software ADA Training Course

17.2. The l i s t of coded Ada words:

Number

9 7

9 8

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

Word

a t

d 0

i f

i n

i s

o f

or

a b s

and

end

f o r

mod

new

n o t

o u t

rem

u s e

x o r

body

c a s e

e l s e

e x i t

g o t 0

l o o p

nu1 1

t a s k

t h e n

t y p e
when

w i t h

Abacum Software ADA Training Courme

a b o r t

a r r a y

b e g i n

d e l a y

r a i s e

e l s i f

e n t r y

range

w h i l e

a c c e p t

a c c e s s

d i g i t s 10

o t h e r s

pragma

r e c o r d

r e t u r n

s e l e c t

d e c l a r e

g e n e r i c

l i m i t e d

package

p r i v a t e

renames

r e v e r s e

s u b t y p e

c o n s t a n t

f u n c t i o n

s e p a r a t e

procedure

t e r m i n a t e

= >

Abacus Software ADA Train ing Course

: =

/ =

> =

< =

< <
> >
< >
except ion

E-0-F

Abacus S o f t w a r e ADA T r a i n i n g C o u r s e

18. The S e m a n t i c A n a l y e i e

A t t h e c o n c l u s i o n o f t h e s y n t a c t i c a l a n a l y s i s f o l l o w s t h e

s e m a n t i c a n a l y s i s . The s e m a n t i c a n a l y s i s c h e c k s w h e t h e r t h e

p rogram is c o r r e c t a c c o r d i n g t o program s t r u c t u r e . For

example a program c a n b e s y n t a c t i c a l l y c o r r e c t making u s e o f

t h e o u t p u t r o u t i n e b u t m i s s i n g t h e a s s i g n m e n t o f t h e i n p u t

a n d o u t p u t p a c k a g e s . I t i s n o t , however , s e m a n t i c a l l y

c o r r e c t . I n t h e s e m a n t i c a n a l y s i s a l l o f t h e t e s t s a r e now

c o n d u c t e d which c o u l d n o t b e done d u r i n g t h e s y n t a c t i c a l

a n a l y s i s .

Examples :

You want t o d i r e c t t h e o u t p u t t o t h e p r i n t e r w i t h s e t - o u t p u t

(PRINTER) b u t t y p e d "PRONTER" i n s t e a d o f "PRINTER".

S y n t a c t i c a l l y t h e command i s c o r r e c t b e c a u s e t h e P a r s e r

l o o k s f o r a n i d e n t i f i e r i n p a r e n t h e s e s . However i f t h e

mach ine program is p r o d u c e d , t h e compute r must r e c o g n i z e t h e

d e v i c e "PRONTER" and know how i t s h o u l d b e a d d r e s s e d . T h e r e

is no s u c h d e v i c e and i t is c l e a r t h a t t h e command must b e

r e j e c t e d . The s e m a n t i c t e s t u n d e r t a k e s t h i s j o b .

You h a v e i n your program f o r g o t t e n t o d e c l a r e a d a t a o b j e c t ,

o r you h a v e i n c o r r e c t l y n e s t e d l o o p s o r t r i e d o u t a

p o s s i b i l i t y f o r wh ich n o mach ine program c a n b e p r o d u c e d -
i n a l l o f t h e s e c a s e s t h e s e m a n t i c c h e c k c a n g i v e

i n f o r m a t i o n a s t o t h e i r c o r r e c t n e s s .

One c a n s a y i n s i m p l i f i e d t e r m s : E v e r y t h i n g t h a t c a n o n l y

w b e f o r m u l a t e d w i t h words r a t h e r t h a n a d d i t i o n a l r u l e s is

e u b j e c t t o s e m a n t i c e x a m i n a t i o n .

Abacum Software ADA Training Courme

How does the program do this semantic test?

When the parser checks a program for syntactical accuracy,

it starts on its way with the first rule of grammar. It

follows a path through the grammar, which is characteristic

for the program. The semantic analysis follows this path and

can then carry out the testing.

How does the program for the semantic analysis obtain the

necessary information? The grammar, as it is printed in

this book, is expanded with additional symbols. If the

parser comes upon such a symbol, it then has a specific

action to perform.

Example:

It has just processed the rule which means that an

identifier is at the end. Then it comes upon a symbol that w
instructs: Pass on this identifier to the semantic test.

It is in this way that the semantic analysis obtains your

information.

Closely related to the semantic analysis is the production

of the assembler program. If the semantic check is

successful, we know that a correct machine program can be

produced. Moreover, the program for the semantic analysis

is ready to recall all the information for the production of

the assembler program. For that reason it is easy to

produce the assembler program parallel to the semantic

analysis.

Abacus Software ADA Training Couree

If you want to do this then you will have to save all of the

necessary information on the disk again. This would mean a

longer compiling time. In this method you would produce an
L*

executable program right after the semantic check by running

an assembler program. This will give you the possibility of

actively engaging in the compiling process. This method

enables you to combine your own assembler programs with Ada

programs or you could change programs produced by the

compiler as you wish. So I have settled on this method. I

find it good if one not only gives instructions to the

compiler "for better or for worse", but also can see his own

ideas realized in the produced machine program.

With modern programming languages the cost for the semantic

analysis is very high, because one wants to inform the user

of all possible errors. In earlier programming languages

this was not always so. The compiler in question compiled
lIV programs which did not work in every case. They had gaps as

it were in the working of the rules. It is possible to use

these gaps and draw from the computer possibilities over

which the language actually doesn't have control. One

programs with "tricks", fully aware of the risk of failure.

It is only bad luck if the programmer misses a "gap" by

mistake, receives no error message from the compiler and as

a result has no idea where he should look for the error in

the program. Even the "self-proclaimed" computer experts

couldn't help him. I know of a mainframe computer with

which the utilization of such a "gap" began to execute a

program that quit after awhile and printed the message

"computer defect", although the computer was in perfect

working order.

w

Abacus Software ADA Training Courme

With Ada one is protected from such undesirable surprises.

The semantic analysis together with the production of the

assembler program occupies a great deal memory. The

compiler in the C-64 occupies almost all of the memory space v
available. The great memory area results in a reduction in

size of the compiling languages.

Abacus Software ADA Training Course

19. Ada Grammar

Why do I need the grammar?

The grammar of the language gives information about how a

program can be made syntactically correct. It describes the

syntax of all possible Ada programs which can be compiled by

the Ada compiler in this Ada training course. it can give

you very helpful information when the compiler gives you an

error meseage which you do not immediately understand. It

can also give information about whether a specific command

construction is possible or not. Such grammars exist for

most programming languages, and they represent the single

greatest aid when writing compilers. They describe what

demands the user may make on the compiler. It is a part of

the standard of a programming language. Learn to use the

w grammar! This knowledge will be invaluable when learning to

uee a new programming language. You can recognize the key

points of a language by studying the grammar. You can

recognize what possibilities the language offers you, and

whether it would pay to learn more about the language. The

grammar has the advantage that it yields a great deal of

information in a very brief form. I always have the grammar

of the programming language I am working with in reach when

programming. For programming languages with a relatively

emall scope, such as BASIC, you can keep the grammatical

rules in your head, but you should learn the possibilities

and capabilities which programming languages like Ada,

FORTRAN, or COBOL offer.

Abacus Software ADA Training Cour8e

Information on use of the grammar can be found in the

sections "14. The compiler operation -- 16. The syntactic

analysis." There you will find an example of the path you

might take through the grammar when you analyze a program. w

The individual rules of the grammar are numbered and you can

find them quite quickly with the help of the index.

fibacus Software fiDfi Training Course

19.1. The rules of the grammar:

001 compilation - compilation-1 E-0-F
002 compilation-1 - context-clause compilation-unit

compilation-1

003 I L

009 compilation-unit : : - "procedure" identifier format-part

subprogram-spe

005 : "package" package-se
006 context-clause::- "with" identifier with-1 " ; " context-?

context-clause

007 I L

008 context-2 - "use" identifier use-1 " ; " context-2

009 I L

010 with-1 . . = . . 1 3 , " identifier with-1

011 L

Pr 012 use-1 . . - . . " , " identifier use-1
013 : L
019 subprogram-spe : : - " ; "

015 I "is" declarative-part "begin"

sequence-of-statements package-?

"end" subprogram-spe-1 " ; "

016 subprogram-spe-1 : : - identifier

017 I L

018 formal-part - "C" parameter-specification

parameter-spe-1 "I"

019 I L

020 parameter-spe-1 : : - " ; " parameter-specification

parameter-spe-1

02 1 I L

022 parameter-specification : : = identifier-list " ; " mode

type-mark expre-1

Rbacus Software RDR Training Course

023 mode

029

025

026 mode-1

027

028 expre-1

029

030 package-se

: : - "in" mode-1

I "out"

I L
. .- . . "out"

I L
. .- I T . - > - . . . expression

I L
. . . . - identiFier "is" declarative-part

package-1 "end" package-2 " ; "

I "body" identifier "is" declarative~part

package-3 "end" package-2 " ; "

: : - "private" declarative~part

I L
. . . - . identifier

I L
. . . . - "begin" sequence-OF-statements package-9

I L
. . . . - "exception" exception-handler

exception-1

039 I L

090 exception-1 - exception-handler exception-1

09 1 I L

092 declarative-port : : - declarative-1 declarative-port

09 3 I L

099 declarative-1 : : - "procedure" identiFier Formal-part

subprogram-spe

I "package" package-se

I "use" identifier use-1 " ; "

I "type" identifier "is"

type-definition " ; "

I "subtype" identifier "is"

subtype-indication " ; " "r)

I identifier-list " : " switch-decl-1

t3bacus SoFtware ADO Training Course

050 switch-decl-1 . . . - . "exception" "; "

051 I "constant" switch-decl-2

052 I subtype-indication expre-1 " ; "

053 I array-type-definition expre-1

059 switch-decl-2 : : - subtype-indication expre-1 " ; "

055 I array-type-definition expre-1 " ; "

056 I ":-" universal~static~expression " ; "

057 identifier-list : : - identifier identifier-1-1

058 identifier-1-1 : : - " ," identifier identifier-1-1
059 I L

060 identifier - letter ident-1
061 ident-1 : : - "-" letter-or-digit ident-1

062 I letter-or-digit ident-1

063 I L

069 letter-or-digit : : = letter

065 I digit

066 character-literal : : - " ' " graphic-character " ' "

067string-literal : : - """ string-1 """

068 string-1 - graphic-character string-1

069 I L

070 graphic-character : : - letter

07 1 I digit

072 I space

073 I special-character

079 type-definition : :- " C " enumeration-literal type-d-1 " 3 "

075 I range-constraint.

076 I "digits 10" range-constraint

077 I array-type-definition

078 I "neu" subtype-indication

079 type-d-1 - 11 , 11 enumeration-literal type-d-1

080 I L

081 subtype-indication : :- type-mark constraint

082 type-mark . . . - . identifier

Abacus Software ADA Training Course

083

OBY

085

086

087

088

089

090

constraint : : - range-constraint

I index-constraint

I L

range-constraint : :- "range" range

range - simple-expression " . . " simple-expression
enumeration-literal : :- identifier

I character-literal

array-type-definition : :- "array" index-constrnint "of"

component-subtype-indicntion

index-constraint : : - " C " range index-c-1 " I "

index-c-1 . . .- . " ," range index-c-1
I L

exception-hnndler : :- "when" exception-choice

exception-h-1 "-> "

sequence-of-statements
. . - ># 0 P# exception-h-1 . . I exception-choice exception-h-1

I L

exception-choice : :- exception-identifier

I "other"

name- identifier name-1
I charactsr-liternl

nnme- 1 . . - ..,,s . . identifier

I " C " simple-expression name-2

L

name-2 . . .- . " . . " simple-expression " I "

I name-3 name-Y " I "

name-3- relational-operntor simple-expression
I L

name-Y . . .- . " , " expression nnme-Y
I L

expression- relntion expre-2
expre-2 - logical-operator relation expre-2

I L

Abacus Software ADA Training Course

113 relation - simple-expression rel-1
119 rel-1- relational-operator simple-expression

115 I L
w

116 simple-expression : : - simp-1 term simp-2

117 simp-1 . . . - . unary-operator

118 I L

119 simp-2 - adding-operator term simp-?

120 I L

121 term - Factor term-2
122 term-? - multiplying-operator Factor term-2
123 I L

129 Factor . . . - . primary Fac-2

125 Fac-2 - "**" primary
126 I L

127 primary - numeric-literal
128 I string-literal

129 I name prim-1

IV 130 I " C " expression " 3 "

131 prim-1 . . . - . "C " expression "I "

132 I L

133 logical operator : : - "and"

139 I "or"

135 I "xor"

136 relational-operator : : - "-"

137 I " / -"

138 8 8 . < "

139 I P1 < - >1

190 , 87 > = "

191 0 ,> > ,,

192 adding-operator : : - "+"

193 I (1 _ 81

19, I "8"

195 unary-operator : : - "+"

Abacus Software ADA Training Course

1 Lf6 1 11 - 1, ,
197 I "abs"

1 LfB I "not"

199 multiplying-operator : : - "*"
150 I " /"

151 I "mod"

152 I "rem"

153 sequence-of-statements : : - label-1 statement seq-1

15Lf seq-1 : : - label-1 statement seq-1

155 I L

156 label-1 - " < < " identifier " > > " label-1

157 I L

158 statement - "null" "; "

159 I state-1

160 I "exit" exit-1 exit-2 " ; "

161 I "return" return-1 " ; "

162 I "goto" identifier " ; "

163 I "raise" raise-1 "; "

16% I if-statement

165 I case-statement

166 I block-statement

167 state-1 - identifier name-1 state-2

168 I character-literal state-3

169 I loop-statement

170 state-2 . . . - . * 3 . - 1 , . expression " ; "

171 I I ,,. . ,, loop-statement

172 I actual-parameter-part " ; "

173 state-3 . . . - . l * . m ~ ~ . expression "; "

179 I actual-parameter-part " ; "

175 if-statement - "if" condition "then"
sequence-of-statements if-1 if-2
"end" "if" " ; "

. . . . - "else if" condition "then"

Abacus Softwars ADA Training Course

sequence-of-statements if-1

I L
. . . .- "else" sequence-of-statements

I L

180 condition - boolean-expression
181 case-statement : :- "case" expression "is"

case-statement-alternative case-1
"case" " "

182 case-statement-alternative : : - "when" choice case-Z " ->"

sequence-of-statements

183 case-1- case-statement-alternative case-1
1 BY I L

185 case-2 . ._ 1 1 1 * 1 . . choice case-2

186 I L

187 loop-statement : :- loop-2 basic-loop loop-3 " ;"

188 basic-loop- "loop" sequence-of-statements
"end" "loop"

Irr 189 iteration-rule : : - "while" condition
190 I "for" identifier "in" loop-9 range

191 loop-2 - iteration-rule
192 I L

193 loop-3 . . . - . identifier

199 I L

195 loop-Y- "reverse"
196 I L

197 block-statement::-block-1 "begin" sequence-of-statements

package-Y "end" " ;"

198 block-1 : : - "declare" declarative-1 declarative-part

199 I L

200 exit-1 . . .- . identifier

201 I L

202 exit-? . . .- . "when" condition

203 I L

Rbacus Software RQR Training Course

209 return-1

205

206 actual-pnrnmeter

207

208 actual-1

209

210 para-1

21 1

212 actual-parameter

213 nctua-1

219

215 rnise-1

216

217 choice

218

219 numeric-literal

220 num-1

22 1

222 num-2

223

229 integer

225 int-1

226

227

228 exponent

229 exponent-1

230

231

. .- . . expression

I L

-part : : = " C " identifier "-> "

actual-pnrameter actual-1 "I"

I L
. . _ 1 7 . . , para-1 actual-1

I L

: : - identifier " - > " actual-parameter

I L
. . . . - name actu-1

. . . - . " [" " 3 "

I L
. . . - . identifier

: L
simple-expression

"others"

integer num-1 num-2
,, . ,, integer
L

exponent

L

digit int-1

"-" digit int-1

digit int-1

L

"E" exponent- 1
. . = "+ " . . integer

I 1, _ 1, integer

I integer

Abacus SoFtwore ADA Troininp Course

19.2.. Index to the grammar!

'-
The index is constructed os follows:

The number of the rule is the First thing on the line. This

nppenrs if you output the stack during the syntocticol

nnnlysis. Then Follows the name of the rule. The number

oFter this gives the number with which the rule is deFined

in the grommar. The numhers after the slosh indicate the

grnmmatical rules in which the given rule is used.

001 octuo-1 213 / 212

002 octuol~l 208 / 206,208

003 octuol~parometer 212 / 206,210

009 actuol~parometer~port 206 / 172,179

005 adding-operator 192 / 119

006 array-type-definition 090 / 53,55,57
007 ..
008 basic-loop 188 / 187

009 block-1 198 / 197

010 block-statement 197 / 166
011 ..
012 case-1 183 / 181,183

013 cose-2 185 / 182,185

019 case-stoternent 181 / 165

015 cose - s t o t e rnen t -n l t e rno t i ve 182 / 181,183

016 character-liter01 066 / 89,100,168

017 choice 217 / 182,185

018 compilation-1 002 / 1,2

019 compilation-unit 009 / 2

020 condition 180 / 175,176,189,202

Rbacus Software RDR Training Course

constraint

context-2

context-clause 006 / 2,6
..

declarative-1 099 / 92,198

declarative-part 092 / 15,30,31,32,92,198

digit / 65,71,229,225,226
..

enumeration-literal 088 / 79,79

exception-1 090 / 38,90

exception-choice 097 / 99,95

exception-h-1 095 / 99,95

exception-handler 099 / 38,YO

exit-1 200 / 160

exit-2 202 / 160

exponent 228 / 222

exponent-1 229 / 228

expre-1 028 / 22,52,53,59,55
'*sY

expre-2 111 / 110,111

expression 110 / 28,56,108,130,131,170,173,180,

181,209
..

fac-2 125 / 129

factor 129 / 121,122

formal-part 018 / 9, 99

graphic-character 070 / 66,68
..

ident-1 061 / 60,61,62

identifier 060 / 9,6,8,10,12,16,30,31,39,99,96,97,

98,57,58,82,88,97,99,101,156,162,

167,190,193,200,206,210,215 w
identifier-1-1 058 / 57.58

Rbocus Softwors RDR Training Course

051 identifier-list 057 / 22,99

052 iF-1 176 / 175,176

053 iF-2 178 / 175

059 if-statement 175 / 169

055 index-c-1 092 / 91,92

056 index-constraint 091 / 89,90

057 int-1 225 / 229,225,226

058 integer 229 / 219,220,229,230,231

059 integer-rule 189 / 191
060 ..

label-1

letter

letter-or-digit

logical-operatar

loop-2

loop-3

loop-9

loop-statement

070 mode 023 / 22

071 mode-1 026 / 23

072 multiplying-operator 199 / 122
073 ..
079 name

075 name-1

076 name-2

077 name-3

078 name-9

079 num-1

080 num-2

081 numeric-literal
082 ---------------------

Rbacus Software RDR Training Course

089 package-? 039 / 30,31

085 package-3 036 / 31

086 package-9 038 / 15,36,197

087 package-se 030 / 5,95

088 para-1 210 / 208

089 parameter-spe-1 020 / 18,20

090 parameter-specification 022 / 18,20

091 prim-1 131 / 129

092 primary 127 / 129,125

093 ..

099 range 087 / 86,91,92,190

095 range-constraint 086 / 75,76,83

096 raise-1 215 / 163

097 rel-1 119 / 113

098 relation 113 / 110,111

099 relational-operator 136 / 106,119

100 return-1 209 / 161
101 .. w
102 seq-1 159 / 153,159

103 sequence-of-statements 153 / 15,36,99,175,176,178,182,

188,197

109 simp-1 117 / 116

105 simp-2 119 / 116,119

106 simple-expression 116 / 87,102,109,106,113,119,217

107 space / 72

108 special-character / 73

109 state-1 167 / 159

110 state-2 170 / 167

111 state-3 173 / 168

112 statement 158 / 153,159

113 string-1 068 / 67,68

119 string-literal 067 / 128

115 subprogram-spe 019 / 9,99

Abacus Software ADA Training Course

116 subprogram-spe-1 016 / 15

117 subtype-indication 081 / 98,52,59,78,90

118 switch-decl-1 050 / 99

'- 119 switch-decl-2 059 / 51
120 ..

121 term 121 / 116,119

122 term-2 122 / 121,122

123 type-d-1 079 / 79,79

129 type-definition 079 / 97

125 type-mark 082 / 22,81

127 unary-operator 135 / 117

128 use-1 012 / 8,12,96
129 ..

Abacus Software ADA Training Course

{This page left blank intentionally]

Abacus Software

20. The A~serbler

ADA Training Courae

eV
The assembler is required when one wishes to convert

assembly language programs into machine language programs. I

would not like to delve any deeper into programming the

microprocessor in machine language; you can find that

information in numerous other places. What I would like to

do is to acquaint you with the characteristics of this

assembler.

What does an assembly language program consist of?

1) Instructions which will be translated into machine code

by the assembler.

2) Instructions which provide the assembler with information

about the program and so control the assembly. These

instructions are also called pseudo-instructions or pseduo-

operations (pseudo-ops) because they do not correspond to

machine language instructions as do regular assembly

instructions and do not appear in the machine code. The

disassembler cannot reproduce these instructions in its

conversion from machine code into assembly language

mnemonics. This is possible for instructions of type 1).

I would like to make a few comments about the notation of

assembly language programs:

Assembly language programs can be written and stored like

BASIC programs. This allows you to view and analyze the

assembly language programs which the Ada compiler produces.

This is perhaps the greatest aid to you. I left this

Abacum Software ADA Training Courme

interface to the Ada compiler open, even though there are

faster ways of compiling an Ada program. This allows you to

see how the compiler goes about analyzing an Ada program,

and exactly what the results of this analysis are.
kd

Comments in an assembly language program begin with a

semicolon. A semicolon tells the assembler to ignore the

rest of the line. Comments may begin at any point on the

line.

Example:

10 ; This is a comment which

20 ; stretches over several

30 ; lines.

40 LDA 12 ; load acc with contents

5 0 ; of memory location 12

Spaces function as separators. They separate the basic 'yP

elements of assembly language programs from each other on

the line. An instruction ends with the end of the line. Only

one assembler instruction is possible per line.

Abacum Software

20.1 Operandm

ADA Training Courme

Operands can be decimal numbers, hexadecimal numbers, and

*Y symbols (labels, names) of arbitrary length. Symbols must

begin with a letter.

Examples:

Decimal numbers: 15

1000

Hexadecimal numbers:

$FFFF

$OD

$1234

Symbols:

OTTO

JUMPDESTINATION1

TEXT-OUTPUT

Concerning type 1) commands:

The mnemonic abbreviation of commands corresponds to the MOS

standard. The notation for the various addressing modes is

explained below.

The shift and rotate commands which involve the accumulator:

ASL ACCU

LSR ACCU

ROL ACCU

ROR ACCU

Abacus Software ADA Training Course

One-byte commands such as BRK as written as usual.

Direct addressing:

Command construction: First comes the mnemonic abbreviation,

then a space, a number sign (#) , a space if desired, and

finally the operand.

Examples of direct addressing:

LDA # OTTO

AND #OTTO

ADC # 13

ADC #13

CUP # ll2FF

Zero-page and absolute addressing without index:

Command construction: The mnemonic abbreviation, at least

one space, operand.

Either zero-page or absolute addressing is chosen based on

the size of the operand. If the operand is symbol which has

not been defined up to the current point in the assembly

language listing, absolute addressing is chosen. This is

done because the assembler reads the source code only once

in order to save time.

Abacum Software ADA Training Course

Examples:

ORA OTTO

STA 234

LDA $PE

STX 12345

Zero-page and absolute addressing with index:

Command construct ion: Mnemonic, space, operand, comma, and

"Xu for the X index-register or a "Y" for the index register

Y.

Bxamples:

STX OTT0,Y

STY OTTO, X

STA $44, X

LDA 123,X

Indexed indirect addressing:

Command construction: mnemonic, as many spaces as desired

(but at least one), open parenthesis, arbitrary number of

spaces, operand, arbitrary number of spaces, comma,

arbitrary number of spaces, an "X", close parenthesis.

Bxamples:

LDA (OTTO ,X)

STA ($AA, X)

Abacum Software ADA Training Courme

Indirect indexed addressing:

Command construction: mnemonic, at least one space, open

parenthesis, space(s), operand, space(s) , closing

parenthesis, space(s), comma, space(s), the character "Y".

Examples:

LDA (OTTO),Y

STA (123) , Y

Indirect absolute addressing:

This type of addressing can be used only with the JMP

command.

Example:

JMP (12345)

Relative addressing:

This method of addressing is used for the-relative jumps.

Command construction: mnemonic, at least one space, operand.

The operand must in this case be a label marking a jump

destination. You will learn in the next section how thin

works.

Examples:

BCC LABEL-1

BPL OUTPUT

Abacus Software ADA Training Course

The pseudo-ope control the assembler and have only an

b indirect effect on the corresponding machine language

program. Pseudo-ops are denoted by a preceding period. There

are also abbreviations for most of the pseudo-ops in order

to allow you to write as short an assembly source file as

possible.

Take a look at the assembly language programs the compiler

creates. This alone should clarify many questions which you

night have and you have a collection of examples which you

can refer to and expand at any time. Once you have practice

in programming in Ada and assembly language, and are

familiar with how the compiler works, you can try to

optimize the assembly source code. This Ada compiler makes

no attempt at optimization.

The instruction: . START

(.START) sets the address at which your machine language

program will begin. The operand following determines the

start address.

Example:

The instruction: . B ND

9y (.END) tells the assembler that the assembly language

program is now done. No example is required.

Abacus Software ADA Training Course

The instruction: .LABEL or .L

With this instruction you can define symbols as jump

destinations. The symbol is assigned the address of the hd
memory location at which the next machine language command

will be placed. If you like, you can also you use this

symbol to provide the accumulator with the contents of this

memory location, for instance.

Examples:

The instruction: . EQU or .E

This instruction permits values to be assigned to symbols. kid

In the assembly, the symbol will be replaced by its value. A

symbol may be assigned a value only once with .EQU.

Examples:

CHARLOTTE .EQU $FEFE

HANS .EQU 123

JOHN .E MONICA

The instruction: .VAREQU or .V

This instruction is used in order to change the value of a

symbol.

Abacu. Software

Examples:

ADA Training Courme

JOHN . VAREQU CHARLOTTE
JOHN . V SUSANNE

The instruction: .BLOCK or .BL

You need this instruction to reserve space for data in an

assembly language program. The operand behind the

instruction gives the number of memory locations (bytes) to

be reserved.

Examples :

.BLOCK 555

. BL HANS

The instruction:

If you want to save character strings, you would use this

command. The character string is saved at the location at

which the instruction occurs. The string is enclosed in

quotation marks. The first quotation mark is not saved,

although the last is. A character with value zero is also

added. This command is most often used to later output the

character string. To do this we need only the address at

which the text can be found, pass this to a ROM routine, and

jump to this routine in order to output the text. See also

the examples for the command .COUNT.

Examples:

.TEXT "Hello, I'm here."

.T "That's just great."

Abacus Software ADA Training Courme

The instruction: .BYTE or .B

This command places the value of the operand into the next

memory location and reserves it. The value of the operand 4
must correspondingly lie between 0 and 255 .

Examples:

.BYTE 66

.B C A R L A

The instruction: .DBYTE or .DB

The value of the 16-bit operand is broken into two 8-bit

quantities. Then the most-significant of the two is placed

into memory, followed by the least-significant byte. These

memory locations are also reserved.

Examples:

The first command places the values 2 5 5 and 1 in memory.

The second command places the values 254 and 0 in memory.

The instruction: .WORD or .W

This instruction corresponds to the .DBYTE instruction, but

it stores first the least-significant byte and then the

most-significant. hd

Abacum Software ADA Training Courme

The instruction: .COUNT or .C

If the assembler encounters this command, the following

happens: When the assembler is started, it places the

symbols CL and C H in its symbol table. .COUNT assigns values

to these symbols. The address at which the next data will be

placed is divided into two 8-bit pieces. CL is assigned the

least-significant byte and C H the most-significant. If CL or

CL appears in the next instructions, these values are

substituted. .COUNT actualizes these values.

Example:

Output the sentence "John is a bad boy!"

JMP TEXT-1 ; jump over the

; sentence

.COUNT

.TEXT "John is a bad boy!"

TEXT-1 .LABEL ; jump

; destination

.LDY # CL ; load the pntrs

. LDA # CH ; for the jump

; to the ROM

; routine

JSR ; jump to ROM

LDA # 13 ; load CR

; character

JSR ; jump to the

; kernal output

; routine

I hope that you have fun programming in assembly language!

Abacus Software ADA Training Course

(this page left blank intentionally)

Abacus Software

21. The Disammembler:

ADA Training Courae

* The disassembler is required when you want to analyze

machine language programs. With the help of the assembler

you can write machine language programs which you can either

run separately or use in a BASIC or Ada program.

A disassembler converts machine code back into the assembly

language mnemonics which produced it (or more exactly, to

the mnemonics to which the codes correspond). It is not

within the scope of this book to discuss programming 65XX

family microprocessors. There are a number of good books

available on this topic. I would like to recommend the book

by Lothar Englisch The Machine Language Book for the

Commodore 64. Englisch has a very good programming style.

Also worthy of recommendation are the "classics" by Rodney

Zaks and Lance A . Leventhal. These two concern only the 6502

microprocessor in general and are neither limited to nor do

they give specific information about the Commodore 64. The

Programming Manual for the R6500 family from Rockwell

International is also good.

The disassembler is stored as a compressed BASIC program on

the disk. This has the advantage that you can move the

disassembler around in memory as desired. This is not

possible with a compiled program. This makes up for the

decreased speed in my opinion. If you have a machine

language program at locations 2047 to 10000, for example,

you can load the disassembler at location 10002. To do this,

enter the following lines in command mode:

Abacus Software ADA Training Course

POKE 44, INT(10002/256)

POKE 43, 10002 - 256 * PEEK(44)

POKE 10002 - 1 , 0

You can then load the disassembler with:

LOAD "DISASSEMBLERW,8

If the machine language program lies outside the range 2047

- 12000, you can omit the first three lines of this

procedure.

If you have loaded the disassembler at location other than

normal (other than typing simply LOAD "DISASSEMBLER",8), you

must be sure to return the computer to its original

condition when you are finished. This is done with the

following lines:

POKE 43,l

POKE 44.8

If you want to know how far the program which you have in

memory extends, enter:

PRINT PEEK(45) + PEEK(46) * 256

Load the disassembler and start it with:

RUN

A menu appears from which you can select the various

commands of the disassembler. Let us go through the commands d
one by one.

Abacuo Sof tware A D A Tra in ing Course

M : MENU

By pressing the <M> key the menu reappears. This allows you

to be informed of the commands at your disposal.

F : FREE SPACE

This command tells you how many free memory locations are

left, memory locations whose addresses are higher than the

end address of the disassembler. You can get more space for

machine language programs by reducing the space required by

the disassembler. You must POKE the appropriate values into

memory locations 45 and 46 in order to do this.

D : DECIMAL TO HEX

With this command you can convert a decimal number into its

U hexadecimal equivalent. Hexadecimal numbers are often

required when working in machine language, but people still

prefer to work with decimal. This command and the one that

follows are therefore two of my favorite commands.

H : HEXADECIMAL TO DECIMAL

You can convert a hexadecimal number into a decimal number.

A : SET ADDRESSES

Here you can tell the disassembler in which memory range you

would like to work in.

Abacum S o f t w a r e A D A T r a i n i n g Courme

F : MOVE POINTER FORWARD

A t t h e s t a r t o f t h e p r o g r a m t h e work p o i n t e r p o i n t s t o t h e

memory l o c a t i o n se t p r e v i o u s l y b y t h e p r e c e d i n g command. By 'cgr
p r e s s i n g t h e < F > k e y y o u i n c r e m e n t t h e p o i n t e r b y o n e a n d

o u t p u t t h e c o n t e n t s o f t h e l o c a t i o n t o w h i c h i t p o i n t s o n

t h e s c r e e n .

B : MOVE POINTER BACKWARD

W i t h t h i s command y o u c a n d e c r e m e n t t h e p o i n t e r b y o n e a n d

o u t p u t t h e c o n t e n t s o f t h e memory l o c a t i o n i n q u e s t i o n .

P : POKE

By p r e s s i n g t h i s k e y y o u c a n c h a n g e t h e c o n t e n t s o f t h e

memory l o c a t i o n t o w h i c h t h e work p o i n t e r p o i n t s . You w i l l

b e a s k e d f o r t h e new c o n t e n t s o f t h e a d d r e s s . E n t e r t h i s a n d 4
p r e s s <RETURN>. The c o n t e n t s o f t h e memory l o c a t i o n a r e t h e n

c h a n g e d a n d t h e p o i n t e r i s i n c r e m e n t e d b y o n e .

I : INSERT BYTES

You w i l l b e a s k e d f o r t h e number o f b y t e s t o b e i n s e r t e d .

E n t e r t h e number a n d p r e s s <RETURN>. W i t h i n t h e s e l e c t e d

memory r a n g e , a l l t h e c o n t e n t s o f t h e memory l o c a t i o n s a t

t h e c u r r e n t p o i n t e r p o s i t i o n w i l l b e moved u p w a r d s i n memory

b y t h e number o f b y t e s t o b e i n s e r t e d . T h e memory l o c a t i o n s

s o f r e e d a r e f i l l e d w i t h t h e d e c i m a l v a l u e 234. T h i s is t h e

o p - c o d e f o r t h e m i c r o p r o c e s s o r command NOP : NO OPERATION.

Abacum Software ADA Training Course

D : DELETE BYTES

hid
You you must enter the number of bytes to be deleted. This

many bytes will then by deleted at the pointer position. The

rest of the selected memory area is then moved down

correspondingly.

With the <Y> key you can execute a machine language program

which starts at the memory location indicated. The address

corresponds to the start address of the previously-chosen

memory range.

D : DISASSEMBLE & PRINT

Now we come to the disassembling. With < D > we can output a

disassembled program to a printer. It appears in hexadecimal

as well as decimal notation. We first decide whether we want

to enter the start and end addresses in hexadecimal or

decimal. If we enter a character other than "Y", we must

enter the addresses in decimal. We can end the output at any

time by pressing <RETURN>.

F5 : DISASSEMBLE AND PRINT DEC

This command outputs the disassembled program which begins

at the current pointer position on the screen in decimal

form.

Abacus Software ADA Training Course

F7 : DISASSEMBLE AND PRINT HEX

Outputs the disassembled program in hexadecimal form,

otherwise as command F5.
y9

S : SAVE TO DISK

With this command you can save the contents of a memory

range on a diskette.

L : LOAD FROM DISK

With this command you can load the contents of a saved

memory range into the memory of the computer from disk.

Try out all of the disassembler commands. Practice is the

best way to become familiar with anything, and the best way

to be able to work efficiently with the disassembler.
w

Abacus Software ADA Training Course

22. Compiler error messages:

w
When you compile a program, you will certainly find that the

compiler has discovered one or more errors in your program.

There is no reason to doubt that these errors are valid,

although sometimes one would like to.

Errors which will be discovered in the syntactic analysis.

If the compiler discovers an error during the syntactic

analysis, it interrupts the analysis. It outputs the line in

which it discovered the error. The line can only be output

in the form in which the lexical analysis left it. The line

therefore does not have its original form, but it can still

be easily read. The last character printed on the line is

the one which caused the error. The computer will also tell

you which characters (or keywords) would be possible at the

given place. This does not mean that any of these character

would work in this spot, but that the compiler carried its

analysis one step further. In the next step it was able to

reduce the number of possible characters. The characters

given are intended to be suggestions to the programmer as to

what should go in the line.

The compiler then informs you which character it would have

expected in the course of the continuing analysis. This

character must appear in your program. It is also possible,

however, that the compiler has gotten so far off track in

the analysis up to this point that this message is of no

help. You do have an idea of what the compiler expected and

how it understood the last instruction.

Abacus Software ADA Training Courme

The compiler now asks you if you want it to output the

stack. Refer to the section on working with the compiler for

more information about the stack. If you enter a character

other than "Y" followed by the <RETURN> key, the stack will
d

not be printed. If you press only the <RETURN> key, you can

proceed step by step through the stack by pressing any key.

Having done all this, the compiler attempts to continue with

the syntactic analysis. It is possible that one error may

result in the compiler getting off track and printing many

more error messages which are really only indirect results

of the first real error. This is a fault of all compilers,

however. You can learn why this is so in the sections

dealing with the compiler.

The most common error message during the semantic analysis

is "This possibility not implemented!'' This indicates that

you have chosen a program construction which is
w

syntactically correct but for which no machine code can be

created. Otherwise you will get information on what you have

done wrong.

Don't despair! Only through practice can one make any

progress in data processing. Only he who knows all the error

messages of his compiler is really acquainted with it!

Abacus S o f t w a r e

23. R u n - t i r e E r r o r s :

ADA T r a i n i n g C o u r s e

Pu
Run-time e r r o r s a r e t h o s e w h i c h o c c u r w h i l e t h e p rog ram is

r u n n i n g , n o t w h i l e i t is b e i n g c o m p i l e d .

I f y o u r p rog ram c o n t a i n s a l e x i c a l , s y n t a c t i c , o r s e m a n t i c

e r r o r , you g e t a n e r r o r message a l r e a d y a t c o m p i l e t i m e . You

c a n t h e n c o r r e c t y o u r p rog ram a c c o r d i n g t o t h e e r r o r

m e s s a g e . The most c o n c r e t e e r r o r m e s s a g e s a r e t h o s e p r o d u c e d

d u r i n g t h e s y n t a c t i c a n a l y s i s . The p rog ram c h a n g e s a g r e a t

d e a l i n fo rm f r o m s t e p t o s t e p d u r i n g t h e c o m p i l a t i o n ,

a l t h o u g h t h e l o g i c d o e s n o t c h a n g e .

The m a c h i n e l a n g u a g e p rog ram c r e a t e d c o n t a i n s o n l y t h e

n e c e s s a r y i n f o r m a t i o n . A n y t h i n g n o t a b s o l u t e l y r e q u i r e d f o r

i t s c r e a t i o n h a s b e e n l o s t a l o n g t h e way. I t is t h e n v e r y

s h o r t a n d c a n b e e x e c u t e d q u i c k l y . The names o f y o u r d a t a

o b j e c t s a r e o f n o i n t e r e s t t o t h e m a c h i n e l a n g u a g e p rog ram.

I t knows o n l y a t w h i c h memory l o c a t i o n i t c a n f i n d t h e d a t a

o b j e c t .

I f a n e r r o r o c c u r s d u r i n g t h e e x e c u t i o n o f t h e p rog ram, t h e

m i c r o p r o c e s s o r s t o p s e x e c u t i n g t h e p rog ram a n d t h e o p e r a t i n g

s y s t e m o u t p u t s a n e r r o r m e s s a g e . F o r e x a m p l e , i f a f l o a t i n g -

p o i n t v a r i a b l e is a s s i g n e d t h e v a l u e 6E+50 d u r i n g t h e c o u r s e

o f a p r o g r a m , t h e p rog ram w i l l b e i n t e r r u p t s a n d t h e m e s s a g e

" o v e r f l o w " w i l l b e p r i n t e d . You g e n e r a l l y d o n o t know w h e r e

t h i s e r r o r o c c u r r e d and what l i n e t o s e a r c h f o r t h e e r r o r .

The c o m p u t e r c a n n o t g i v e you t h i s i n f o r m a t i o n b e c a u s e i t

d o e s n o t know i t anymore .
'cv

Abacuo Software

23.1 TRACE

ADA Training Couroe

In order to make it easier to find these sorts of errors and 'qlll
also allow you follow the execution of your program, there

is the possibility to output a "trace" of your program. The

trace consists of outputting the numbers of the lines as

they are executed. This way you always know which line ia by

executing at any given time and can so follow the program

course.

The compiler must be told from the start that a program is

to be created which will leave a trace. The editor will ask

you when you tell it to compile a program if you want have a

trace or not. If so, type a "Y" and then press <RETURN>. If

you press <RETURN> without typing anything, you will get a

program without a trace. You can output the trace to a

printer with the met-output command.

A program with trace is somewhat longer than without because

the information about the line numbers must be present in

the machine language program. The assembly time is also

correspondingly longer.

With the help of the trace and additional output with the

put command, you can narrow down the possible locations for

an error.

Abacua S o f t w a r e ADA T r a i n i n g Courae

24. L i a t o f Ada Keyworda:

*
T h i s l i s t c o n t a i n s a l l Ada keywords , i n c l u d i n g t h o s e which

a r e n o t s u p p o r t e d i n o u r Ada t r a i n i n g c o u r s e . The l e x i c a l

a n a l y s i s , however , r e c o g n i z e s a l l v a l i d Ada keywords , s o

t h a t we c a n n o t u s e one which might i n t e r f e r e w i t h t h e

p r o g r a m ' s s u c c e s s f u l c o m p i l a t i o n on a more comprehens ive

c o m p i l e r . T h i s i s done t o improve t h e p o r t a b i l i t y o f t h e

programs c r e a t e d w i t h t h i s c o m p i l e r .

The keywords a r e p r o t e c t e d o r " r e s e r v e d . " T h i s means t h a t

t h e y c a n n o t b e u s e d a s names by t h e programmer.

a b o r t

and

body

d e l a y

e l a e

e x c e p t i o n

g e n e r i c

i a

new

o r

pragma

r a n g e

r e t u r n

a u b t y p e

t y p e

w i t h

a c c e p t

a r r a y

c a s e

d e l t a

e l a i f

e x i t

g o t 0

l i m i t e d

n o t

o t h e r s

p r i v a t e

r e c o r d

r e v e r s e

t a a k

u a e

x o r

a c c e s a

a t

c o n s t a n t

d i g i t s

end

f o r

i f

l o o p

n u l l

o u t

p r o c e d u r e

r e m

s e l e c t

t e r m i n a t e

when

a 1 1

b e g i n

d e c l a r e

d 0

e n t r y

f u n c t i o n

i n

mod

0 f

package

r a i s e

renames

s e p a r a t e

t h e n

w h i l e

Abacus Software ADA Training Course

{This page left blank intentionally)

Abacus Software ADA Training Courme

25. Problem Solution.:

su
These solutions are intended to help you if you find that

you are not able to formulate a working solution to the

practice problems posed at various points in this book. Look

through the listings and study my suggestions. These are not

intended to represent the best solutions to the problems but

they are reasonably efficient and do solve the problems. I

have included plenty of comments to help you follow the

program flow.

As I said, there are theoretically many possible ways to

write a program which yield the same result, en I am

convinced that you will find a number of elegant

possibilit ies. - The suggested program solutions are included on the Ada

Training Course diskette. These may be loaded from the

"editor", they must be saved and compiled on a separate data

diskette. DO NOT COMPILE THESE PROGRAMS ON THE MASTER

DISKETTE ! !

Also included on the master diskette is a DEMO program and

the compiled version of the program, DEMO.OBJ. The DEMO.OBJ

program may be simply loaded and RUN.

Abacus Software ADA Training Course

001310 w i t h TEXT-10: use TEXT-IO;
00020 w i t h CHM-64 : use CE(M-64;
<)(:)I:) 3 (11 --
00040 -- E:.:ample f o r t h e i n p u t and o c ~ t p u t o f d a t a
(:)0051:) -- The name and we igh t o f t h e user
00060 -- w i l l be en te red and p r i n t e d
00070 --
130080 procedure IN-OUT i s
(:)(:)090 --
00100 -- D e c l a r a t i o n o f t h e s t r i n g v a r i a b l e f o r
001 10 -- name o f t h e user
00120 --
00130 NAME : s t r i n g ;
(:)(:)140 --
0015Ci -- D e c l a r a t i o n o f t h e f l o a t i n g -
00160 -- p o i n t var - iab les f o r t h e weight
(>(:I170 --
00180 WEIGHT: f l o a t :
00 1 9 (1) - -
00200 b e g i n
I:) 1:) 2 1 (:) - -
00221:) sc reen& l r ;
(:I (1) 2 30 - -
(:)C)240 s e t j o w (9) :
0025t:) --
00260 p u t (" F ' l ease e n t e r your name: " ! :
(:)027(:) --
00280 s e t j o w (8) ; set-col. (4) ;
c:)(:r29r:) --
00500 g e t (NAME 1 :
(:)(:)x 1 (1) - -
0032~) new-1 i ne ; p u t ! " Your name i s : ") :
(:)(3330 p u t (NAME) ;

Oi.,340 --
0 0 3 5 0 new-1 i n e (3) :
130.760 p u t (" P lease e n t e r your weight : ") ;
(:)1:)370 --
(:I I:) 3 8 I:) new-line: set -co l (4) : g e t !WEIGHT' !:
(:I0390 new-1 i ne (2) ;
I 4 p~.lt,l.ine (" Yon-I w e i g h : ") :

00410 p u t (WEIGHT) ;
i)(:)42C) --
O043r3 end IN-OUT ;

Abacum Software ADA Training Courme

value assign

' 00010 with TEXT-10; use TEXT.,IO;
00020 with C B M A 9 ; use CBM-69 ;
00030 --
00090 -- This Program prints a reciept.
00050 --
00060 -- It asks For information about the transcation.
00070 -- Data is entered on the keyboard and then
00080 -- sent to the Printer.
00090 --
00100 procedure UALUEASSIGN is
00110 --
00120 -- Declare the string variables :

00130 --
00190 BUY : constant string : - "bought on";
00150 TAXAATE : constant string : - "9% sales tax

. P I . . I

00160 DISKETTE : string ;
00170 DATE : string;
00180 NUMBERAISK : string;
00190 NAME : string;
00200 --

W 00210 -- The Price as Floating-point
00220 -- variables.
00230 --
00290 PRICE : Float : - 0;
00250 STATE.-TAX : Floot : - 0.09;
00260 --
00270 begin
00280 --
00290 screen.,.clr ;
00300 --
00310 put-..line C "Enter the buyer : " I ;
00320 get C NAME I ;
00330 --
00390 new .,..., line; put,..line C "Enter the dote of the sale

: " I ;
00350 get C DATE I ;
00360 --
00370 -- Build the First line.
00380 --
00390 NAME C 35..93 I : = BUY C 1..91;
00900 NAME C 96..59 1 : - DATE C 1..91;

w oorio--
00920 -- Dutput the first line to the screen.

Abacua Software ADA Training Course

OOLf30 --
00Lf90 put-line C NAME I ;
00950 new-line ;
00960 -- Build the second line. 1
00970 --
OO9EO put-line C "Number if Diskettes purchased? "I;
00990 get C NUMBERDISK I ;
00500 --
00510 put-line C "Total amount? "I;
00520 get C PRICE I ;
00530 --
00590 DISKETTE C 1..Lf I : - NUMBER,.JISK C 1..Lf I ;
00550 DISKETTE C 6..35 I : - "Diskettes at a Price of

I* .
00560 --
00570 put C DISKETTE I ; put C PRICE I ;
00580 new-line ;
00590 --
00600 --
00610 -- Build the third line :
00620 --
00630 STATE-TAX : - PRICE * STATE-TAX;
00690 --
00650 put C TAXJATE I ; put C STATE.-TAX I ;
00660 new-line ;
00670 --
00680 --
00690 -- Output to the Printer.
00700 --
00710 setdutput C printer I ;
00720 put-line C NAME I ;
00730 put C DISKETTE I ; put C PRICE I ;
007Lf0 new-line ;
00750 put C TAXJATE I ; put C STATE TAX I ;
00760 new-line ;
00770 --
00780 set,..nutput C screen I ;
00790 --
OOEOO end UALUE.ASSIGN ;

Abacus Software ADA Training Courae

(:)(:)(:I 10 w i t h TEXT-I 0; use TEXT-10;
1:)002i., w i t h CHM-64 ; use CBM-64;
(1) (11 (1) 3 (1) - -
(:)OC)40 procedure NUMBERLOOF'S i s
(:)(:1(:)5 (1) -- -
OOO6!:1 --decl. a r e t h e number v a r i a b l e s
(3 (:I(:! 7 0 - -
C) CiC) 8 (11 NUMBER : f l o a t : =C);
(1) 0 (:I 9 (:) HI LF : f l o a t ;
0(:)1(:,(:) --
0(:) 1 1 0 b e g i n
0(:!1 20 --
0(:)13Ct -- output comments.
(:I(:) 1 40 - -
00 150 screen-c l r ; new-1 i n e (5) ;
1 : p u t - l i n e i "O~ctput t h e even numbers :"!;
0 0 1 '7 (:) - -
Oil180 -- Setup t h e f i r s t - l o o p .
(:I0190 --
(:)i120(:) FIRST : loop
(:I (:I 2 1 (3 - -
Or.1220 NUMBER := NUMBER + 1;
01:)230 --
0024(:) -- The fi.rst,loop w i l l q u i t

-- when t h e NUMHER i s g r e a t e r than 50
- -

0C12 7 63 e x i t FIRST' when NUMHER 1::. 50:
(1) 0 2 €3 1:) - -
002?!:! -- Output t h e even numbers.
(:) (1) .: (1) (:) --
C! 03 1. 0 H1L.F : = NUMHER 1 2:
(:)032(:) pu t ! H1L.F ; new-line:
1:) r:1:5:5 0 --
(:)(:) 3 40 end loop FIRST:
(:)(:):35 (:) --
OOJb!:! -- Ocktpcct t h e odd numbers.
(:)(:):3.7(:!
0!:!58(2! put,]. i.ne ("Output t h e odd nrnctber.~! " :
(3(:)39(:)
0!:)40(:! -- Setup t h e second,l.oop.
00411:) --
(:)C) 4 2 !:! f n r I i n 50. . 9s 1 oop
(:)I:) 4 3 1:) .- -
(I)!:! 4.4 i:! HILF :::: f l u a t i I 1: HILF := HIL-F t 2 : H1L.F :=
HlLF + 1;

(:I (:! 4 6 (1) - - @cctpc!t. t h e odd nccmbers.
004.70 - -
004RC) p ~ c t ! H1:LF ! ; new-line:
0 0 4 9 (1) - -
Oi)500 end 1 oop :
0(35 1 0 --
OC)520 end NUMRER J-OOPS :

- 141 -

Abacum Sof tware ADA T r a i n i n g Courme

deci s i an

00010 w i t h TEXT-IO; use TEXT-IO;
0002C) w i t h CBM-64 ; use CRM-64;
cJ0(>30 --
00040 procedure DECISIDN i s
1)0()50 --
00060 --
13@070 -- d e f i n e t h e t e s t v a r i a b l e .
00080 --
00090 TEST : f 1 oat :
01:)1(30 --
0011C) --
00120 beg in
00130 --
0014(:) s c r e e n ~ l r ;
O(3150 --
00160 new-1 i n e (5) ;
00170 --
00180 p u t - l i n e ("Dutput P r i n t e r (I) / Screen (2) ? ") :
(:rt3190 --
00200 get (TEST) :

c3<:12 1 0 --
002ZC) if TEST-1 then

(1) 2 3 0 --
00240 - - D u t p ~ ~ t t o t h e P r i n t e r .
(:I (1) 25 (1) - -
0026r:) set-output (p r i n t e r) ;

(3(:)27(3 put-1 i n e ("Block: s t r .uc tnres a r e g rea t ! ") ;
(:I (1) 2 8 0 set-output (screen) :
0(1)290 --
00300 --
013.31(> e l s e
00320 --
00330 - - Dutput t o t h e Screen.
@(:I340 --
CrO 350 p u t - l i n e ("Block s t r c ~ c t u r e s a r e g rea t ! ") :

00.36(3 --
0(:)370 --
00381:) end if ;
0(:)390 --
(:)040(:) end DECISION ;

Abacus Software ADA Training Courme

screen c o r x t r o l - 00010 w i t h TEXT-10 ; u s e TEXT-10 ;
0(:)(321:) w i t h CHM-64 ; u s e C H M - 6 4 ;
(>(:1(:):7;(:, --
0!:)040 p r o c e d u r e S C R E E N L O N T R O L i s
(:) 0 (3 5 (:) - -
00060 b e g i n
0 r : 1 0 7 0 -- C l e a r t h e s c r e e n .
1:) (1) C) 8 (:) s c r - e e n s l r ;
01:)0?1:) -- S e t b o r d e r t o g r e y 2 .
1:) (11 1 1:) 0 - -
OCI 1 1 CI s e t - b o r d e r (g r e y s) ;

(:) (1) 1 2 0 - -
0(:)1J(:) -- S e t b a c k g r o u n d t o w h i t e .
1:)(:)14(:1 --
00 I. 50 s e t - b k g r i d (w h i t e) ;

(1) (1) 1 5 (3 - -
01:)17(:) -- Set t h e c c w s o r .
a(:) 180 --
00 1 9 C) s e t j o w (10) :

(31:) 3:) (1) s e t - c o l (20) ;

(:)(:) 2 1 - -
00220 -- S e t t h e c h a r a c t e r c o l o r t o b l a c k : .
1:)1:)2315 --
O(:)24(:1 s e t - t y p e (b l a c k !;
(:)(:)25(:) --
0026111 O u t p u t " R I(:) , C 20 ".
(:) 0 2 7 0 --
I:) (:I 2 9 0 p u t ("F: 10 , C 20 ") ;

(:)(:)290 --
01:)::1:)0 -- Set c u r s o r irs u p p e r l e f t h a n d c o r n e r
(11 (1):: 1 (1) o f t h e s c r e e n .
(:) C! ".;:_'(:I c u r s o r - h o m e :
(-,(-) :7 '7 (-1 -" - - - -, .-h -
OC!34r:) e n d SCREEN,CONTF:OL. :

Abacue Software ADA Training Couree

declarations

510010 w i t h TEXT-10; use TEXT-:O;
OOOZC) w i t h CHM-64 ; use CHM-44 ;
0003() --
00C140 procedure DECLARATIONS i s
(:1(:)(>5(:) --
00060 -- Dec lare t h e I n t e g e r Constant.
(3::)(37(> --
C)C)(:)8C) WHOLE : constant i n t e g e r := -1 :
(:)(:)5)9(:) --
00100 -- Dec lare t h e f 1 o a t i ng-poi n t number.
(>(:)ll(> --
00120 FLOATF' : constant f l o a t : = 0.3e--6 :
c:, (1) 1 3 r:) - -
00140 Declare t h e S t r i n g constant .
(:)O15(:) --
51 0 1 60 STR : constant s t r i n g := "Hi t h e r e ! " ;
(:)0170 --
(:)0180 -- Dec lare t h e I n t e g e r v a r i a b l e .
(3019() --
0(:)2~)c) INT-VAR : i n t e g e r ;
0(:r21(> --
00220 -- Dec lare t h e f 1 o a t i ng-poi n t v a r i a b l e s .
(>(:)23(3 --
OC)240 F'RICE-CHEESE, F'H I CE-SAUSAGE : f 1 oa t : =!:) ;
()(3250 --
00260 -- Dec lare t h e s t r i nq v a r i a b l e .
(3027c:) --
00280 HOUSENAME : s t r i ng : = "Sasse" :
0029(1) --
0(:)3(:)0 -- End of t h e Dec la ra t i ons .
(1) (1) .I 1 (11 - -
00320 beg i n
(3(:):33(3 --
oi:,340 nu1 1 :
00:55i., --
0(:)3h0 end DECLARATIONS :

-

-

V
ID

E
O

B

A
S

IC
-6

4
 -
 add

SO

+
gr

ap
hl

c
an

d
so

un
d

co
m

m
an

ds
 t

o
yo

ur
 p

ro
gr

am
s

w
lth

 t
hl

s
su

pe
r

de
ve

lo
pm

en
t p

ac
ka

ge
 Y

ou
 c

an
 d

~s
tr

lb
ut

e fr
ee

 R
U

N
TI

M
E

ve
rs

lo
n

w
lth

ou
t

pa
yi

ng
 r

oy
al

t~
es

l
55
9.
95

B
A

S
IC

 C
O

M
P

IL
E

R
-6

4
 -
 com

pl
le

s
th

e
co

m
-

pl
et

e
BA

SI
C

la
ng

ua
ge

 I
nt

o
e~

th
er

 fa
st

65

10
 m

ac
hl

ne

la
ng

ua
ge

 a
nd

lo
r c

om
pa

ct
 s

pe
ed

co
de

 G
et

 y
ou

r p
ro

gr
am

s
~

n
to

 h~
gh

 ge
ar

 a
nd

 p
ro

te
ct

 th
em

 b
y

co
m

pl
l~

ng
 U
9.
95

M
A

S
T

E
R

-6
4
-

pr
of

es
s~

on
al

 de
ve

lo
pm

en
t p

ac
ka

ge

fo
r

se
rlo

us
 a

pp
lic

an
ts

In

de
xe

d
fll

e
sy

st
em

,
fu

ll
sc

re
en

m

an
ag

em
en

t
pr

og
ra

m
m

er
 s

 a
ld

 B
AS

IC
 e

xt
en

si
on

s
10

0
co

m
m

an
ds

$3
9.
95

P
A

S
C

A
L

-6
4
 -
 full

Pa

sc
al

 w
~

th
 ex

te
ns

~o
ns

 fo
r

gr
ap

hi
cs

,
sp

rlt
es

, f
~

le
 m
an

ag
em

en
t

m
or

e
C

om
pl

le
s

to

65
10

 m
ac

hl
ne

 c
od

e
an

d
ca

n
lln

k
to

 A
ss

em
bl

er
IM

on
~t

or

ro
ut

in
es

t3
9.
95

F
O

R
T

R
A

N
-6

4
 -
 bas

ed
 o

n
Fo

rtr
an

 7
7

C
om

m
on

.

A
D

A
 T

R
A

IN
IN

G
 C

O
U

R
S

E
 -
 tea

ch
es

 y
ou

th

e
la

ng
ua

ge
 of

 t
he

 fu
tu

re
.

C
om

pr
eh

en
si

ve
 s

ub
se

t o
f t

he

la
ng

ua
ge

,
ed

ito
r,

sy
nt

ax
 c

he
ck

er
lc

om
pi

le
r,

as
se

m
bl

er
.

di
sa

ss
em

bl
er

.
12

0+
 p

ag
e

gu
id

e.

$5
9.
95

C
-L

A
N

G
U

A
G

E

C

O
M

P
IL

E
R

 -
 a

fu
ll

C

la
ng

ua
ge

 c
om

pi
le

r.
C

on
fo

rm
s

to
 th

e
Ke

rn
ig

ha
n

8
R

itc
h~

e
st

an
da

rd
,

bu
t w

ith
ou

t
bi

t f
ie

ld
s.

 P
ac

ka
ge

 in
cl

ud
es

 e
di

to
r.

co
m

pi
le

r
an

d
lin

ke
r.

Ap
ril

 1
98

5
$7
9.
95

O
th

e
r

tl
tl

e
r

a
v
a
il
a
b

le
:

W
rl

te
 o

r
ca

ll
:

P
H

O
N

E
: (

6
1
6
)
2
4
1
-5

5
1
0

F
or

 p
o

st
a

g
e

 a
n

d
 h

a
n

d
lin

g

in
cl

u
d

e

$

4
.0

0

($
8

.0
0

 fo
re

ig
n

)p
e

r
o

rd
e

r.
 M

o
n

e
y

o
rd

e
r

a
n

d

ch
e

ck
s

in

U
.S

.
d

o
lla

rs
 o

n
ly

.
m

a
st

e
rc

a
rd

,
V

IS
A

a

n
d

A

m
e

ri
ca

n

E
xo

re
ss

a

cc
e

d
e

d
.

M
ic

h
ig

a
n

 r
e

si
d

e
n

ts

in
cl

 4
%

 s
a

le
s

ta
x.

D
at

a,
 D

im
en

sio
n,

 E
qu

lva
le

nc
e.

 E
xt

er
na

l.
Im

pl
ic

it.
 G

ot
o,

 E
lse

If.

 D
o.

 C
on

tin
ue

, S
to

p.
 S

ub
ro

ut
in

e.
 C

al
l.

W
rit

e.
 R

ea
d,

 F
or

-
m

at
.

m
or

e.

Ap
ril

 1
98

5
A

ba
cu

s
iiik

ii S
of

tw
ar

e
$3
9.
95

P
.
O
.
 Bo

x
72

11
 G

ra
n

d
 R

a
p

id
s,

 M
I

4
9

5
1

0

-Make ourfa P work ulltirne
MAKE YOUR OWN CHARTS... I CHART YOUR OWN STOCKS...
CUARTPAK-04 S.L.S. COST. TOML c.. . .c,
produces prolessional ""
quality charts and i=aa
graphs Instantly from ,,,.
your dam 8 chart l o r 1
mats. Hardcopy In two
sizes to popular dot t *
matrix prlnters. 138.85 7 -5.s
ISBN1 0-816438-18-4 ., ...

0.. . **. 2 Q.. 3 a,.. .--. ----
Also Ava~lable CHARTPLOT.64 lor unsurpassed qual~ty charts on
plotters. ISBN# 0-916438-20-8 $84.95

DETAIL YOUR DESIGNS...
CADPAK-04
sup& lhghlpen deslgn
1001. exact placement of
object ustng our Accu-
Point positioning. Has
two complete screens.
Draw LINES. BOXes.
CIRCLES, ELLIPSES,
pattern FILLmg; lreehand
DRAW: COPY sections
01 screen; ZOOM In and do detall work. Hard copy In two sues
to popular dot matrlx prlnters. ISBNW 0.91BUO18.6 148.95

are always available.

.
w.os 1P.o (1.1

17 sr0111 11.6 III

FREE PEEKS aPOKEI POSTER WlTU S O M A R E
For norm 6 s d d m ol your neared dealer call (616) 241-5610

CREATE SPREADSHEETS & GRAPHS...

I , ,. , * - om"

data at keyboard 7 mov-
z s-

Ing averages. 3 osc~llators, tradlng bands. least squares 5 vol
ume ~ndlcators, relatlve charts, much more Hardcopy In two
S IZ~S, most prlnters ISBN# 0.816439.24.0 w 95

POWER PLAN-04
not only a powerful

DO YOUR OWN WORD PROCESSING
TEXTOMAT44
llexible worprocessing
package wppomng 40 or
80 cdumns wkh hmizm-
Dl Scmlllng. Commends
are displayed on
the screen awaiting ywr
ckim (Xlckly move hull

,..,,,.,,.: c,,, ,,R P,,.,, ,., ,

ediiing to lormanmng to

work wih virlualiy any pnn
ter ISBN# 091WB12-1 a9.96

ORGANIZE YOUR DATA...
DATAM AT-04

INVENTORY FILE
POwerful, yet easy-to-
use data management It-" m D..cTI ~t I on.--

Package. Free form onh.,,d 1 deslan 01 screen usino I
up i o 50 fields p&
record. Maximum of ~.-d. ~t .-__. R.ovd. Ot
2000 records per I ----

P.O. Box 7211 Grand Rapids, MI 49510 - Telex 709-101 - Phone 6161241-5510

diskette. Complete and
llexible reporting. Son- I

Cum= ---.

ing on multiple lields in any combination. Select records lor prin-
ting In desired lormat. ISBN1 0-818438-16.X 139.95

Ohof Utlm (rdllblm. For FREE UTlllWi on(Mmm e l naoml dodoa. wrlll u roll (8181
241-5510. For mslage an0 handlong mclu0e S4 W 1% W loralgnl per ordar Money Order
and checks 10 U S dollars only Maslercard VISA and Amercan Erprerr acrepled Mchlgan
refldenls include 4% sales lax

crrror: I r r untr. m r m l tslr w4rw Fl Fl -

Required Reading for
vourCOFlFlODORE 64

TRICKS & TIPS FOR VOUR C-64 ANATOMV OF 1541 DISK DRIVE - PEEKS & POKES FOR THE C-64 - .~ ~ - ~ - ~ - ~ ~ - ~ -

treasure cnesl ot eas,lo.se programm ng lecnno oestse ong hanaooo* avaoao e on .s nq Ihe I oppy progfammong a. cues that * I s mPly amaze yo.
pues Mvancea graph cs, easy aata 1np.1, enhanced drsc Clear y erp a.ns a sk Illes N tn many eramp es I n n quode s packed lul ol tecnnlaues for the BAS C
BASIC. CP/M, character sets, transferring data bet-
ween computers. more
180N# 0.916439.03.8 275 papar $19.95

ORAPHICS BOOK FOR C.64. lrom
lundamentals to advanced loplcs l h~s IS most com-
plete relerence available. Sprite annmatlon. Hires.
Multicolor, lightpen. IRO. 3D graphss, proleclions.
Dozens 01 samples.
188N1 0.916439.05.4 350 Pa011 $19.95

SCIENCE & ENOINEERINO ON
THE C-64 - starts by discussing varlable types.
computat~onal accuracy, son algorithms, more.
Topics f rom chemistry, physlcs, biology.
astronomy, eiectronics Many programs.
ISBN# 0.916138.09-7 250 p8008 $19.85

and ut~l~ties. Includes complete commented 1541
ROM llst~ngs
ISBN# 0-916439-01-1 320 pagar $19.95

ANATOMV OF COMMODORE 64 -
insider's guide to the '64 lnlernals Describes
graphics, sound SyntheSIS. 110. kernal routines.
more Includes complele cornmenled ROM lisl~ngs
Fourth prinllng.
ISBN# 0-916439.003 300 pages $19.95

IDEAS FOR USE ON VOUR C-64 -
Wonder what lo do with your '64? Dozens of useful
Ideas lncludlno comolete listlnos for auto exDenses
eleclronlc caiculator, store window advenislng.
reclpe Ille, more
ISBN# 0-916439-07.0 2 W papa8 $12.95

Droarammer
ISBN# C91W13-5 180 pagsr 114.95

ADVANCED MACHINE LANOUAaE - - - - --
FOR C-64 covers 130 cs sucn as u deo con.
trol er I mer and rea t ~ m e clo:~ ser a1 ana para e
10 eaend ng BAS C commands nter#Lpts Dozens
01 sample list~ngs.
ISBN# 0.916439.06-2 210 pngar $14.95

ADVENTURE OAMEWRITER'S
HANDBOOK - s a steo.b,-sle~ o.de l o
deslgnmg and writing your own adveniurigames.
Includes lhsling for an automated adventure game
renerator.
BONY 0 4 1 W 1 4 - 3 2 W papas $14.95

Call today for the name of your nearest local dealer Phone:(616) 241-5510
Other ,itles are available call or For postage and handllng lnclude 14 W ($6 W lorelgn) per order Money orde! 7

for a complete
;atalog, ;d checks m Y I dollars only UasIercard YlSAand AIIIU" Express m p l e d m ' r~m

ochlgan residents include 4% sales tax CANADA: Bmk Center. Montreal Phone (514) 3324154

P.O. Box 7211 Grand Rapids, MI 49510 - Telex 709-101 - Phone 6161241-5510

	ada cover.pdf
	Binder1_Page_1.jpg
	Binder1_Page_2.jpg

