

-

ADA TRAINING COURSE

Structured Language
of the Future
for the Commodore-64

By: V. Sasse

bl 2440u7

A DATA BECKER PRODUCT

Published By:

* ADA is a registered trademark of the U.S. Government

COPYRIGHT NOTICE

Abacus Softwore mokes this pockoge aovoilaoble for use on o
single computer only. It is unlowful to copy any portion of
this softwore paockaoge onto any medium for any purpose oOther
than baockup. It is unlowful to give awoy or resell copises
of ony part of this paockaoge. Any unauthorized distribution
of this product deprives the outhors of their deserved
royalties. For use on multiple computers, pleose contact
Abacus Software to moke such arroangements.

WARRANTY

Abocus Software mokes no warranties, expressed or implied as
to the Fitness of this software product for any particulor

-’

purpose. In no event will Abocus Software be liable for
consequential domages. Abacus Software will reploce any
copy of the software which is unreadoble if returned within
90 days of purchaose., Thereafter there will be o nominal
chaorge for replocement.

-’
Second Frinting, February 1985
Printed in U.S5.A. Translated by Greg Dykema, Lauren Thompson

Copyright (CJ) 188S Abaocus Software, Inc.
P.0. Box 7211
Grand Rapids, ™MI 48510
Copyright (CJl 1984 DOata Becker, GmbH
Merowingerstr. 30
4000 Dusseldorf, W. Germany

ISBN # 0-3916439-15-1

Tablae of Cantents

INTRODUCTION . . ottt ittt i ittt it i s st anntnoanonnaas i
1 The EDITOR.ttt it ittt et nscnaenannans 1
1.1 START MENU. ¢ .ttt ittt ittt ittt st esr s aeanaonnnns 3
1.2. WRITE/EDIT MENU. ottt i tes e snnaanereas 3
1.3, COMMAND MENU. ... ittt ints cnsnnaonnarsasessaasens 8
2 USING THE COMPILER. ...t iu ittt sttt aatnoivannsaneas 11
3 ABOUT THE ADA TRAINING COURSE...... ¢ vevevoauossvanes 15
4 WRITING OUR FIRST ADA PROGRAM. iini e oasas 13
5 TEXT OUTPUT .. sttt e ittt it nas tis e anesnnaacssananas 23
6 SCREEN CONTROL ... v ii e vnrnaneanoanes Ceer e et 23
7 DATA OBJECTS. ... ittt it ittt i s ittt it i it et e e 3as
A S A 4 4 35> T 35
8 DATA INPUT AND OUTPUTttt ittt it snn s e vn v cnnnnnn 41
8. UVALUE ASSIGNMENTS. it ittt it e s i in e e caaes 45
10. FUNCTIDNSo it i it navnasresnaeanasn P 49
11, DECISIONS st v et in vt os it ssosnsnesasssansascasan S3
12. LOOPS..... e ae s e e e e e e =¥4

13, JUMPS . i ettt s ettt e i s e e 63

14. THE OPERATION OF THE COMPILER.........covivivienvunn 65

1S, LEXICAL ANALYSIS. . . i ittt it ittt it e aasasons 63
16. SYNTACTIC ANALYSIS. . . vt et i e i v ss s s s rnsaronsaneaas 73
16.1 THE LL{1]) PLEASURE GARDEN PART 1:............. . 75
16.2 THE LLC1] PLEASURE GARDEN PART 2:......000euevivrann 81
17. WATCHING THE PARSER DO ITS WORK.........ciiiinniinnnn 85
17.1 ERROR HANDLING.t ittt ittt vsennnnsensans 89
17.2 THE LIST OF CODED ADA WORDS. i iriienrnnessns S0
1B. SEMANTIC ANALYSIS. .. ittt it s ittt e it nnaeenas 83
19, ADA GRAMMER ettt ie s ittt i st e s i s e 97
19.1. THE RULES OF GRAMMER . . v v v v v ev e vanesnansansasasse..99
13.2. INDEX TO THE GRAMMERt ivn v nnannanos 107
20, THE ASSEMBLER.t vttt it te st s cs s enanasas 113
20.1 OPERANDSc. it intinnttrtotosentrnornnroasasns 115
20.2 PSUEDD-DOPS. ... ittt it tnatenononsriaasanrenas 118
2l. THE DISASSEMBLER.t vi i tinnnvnvavaraneaessansaa 1es
22. COMPILER ERROR MESSAGES. c. ittt it iinnn e 131
23. RUNTIME ERRDRS.t iv ittt cnnannsnnenens 133

3.1 TRACE tiuneranranrnenanenaasnseneass 134

24. THE ADA KEYWORDS. e e 135

Abacus Software ADA Training Course

The Ada Training Course

Introduction
What is Ada?
Ada is one of a new generation of programming languages. It
gets its npame from from the Countess Ada Lovelace, the

daughter of the English author Lord Byron. The Countess
lived in England during the 18th century and is the first
person to determine how a calculating machine, developed by
Charles Babbage, could be programmed. She is considered to

be the first programmer in the world.

Until now ADA was only known in the higher levels of data
processing (on mainframes), largely because there was no ADA
compiler for the computers which "people like you and 1I"
own. ADA is the language of the future and one should at
least become acquainted with it. This is exactly what the
Ada training course allows you to do. Part of the training
course 1is an Ada compiler which compiles a subset of this
language into machine language.

This training course includes:

1) The program diskette
2) The text book

Abacus Software ADA Training Course

The program diskette:

There are five main programs on the diskette.

A) The EDITOR
You write your ADA programs with the editor. The
editor also includes complete disk management
capabilities. You can easily send commands to your
digsk drive, display the directory listing or send
it to a printer, etc.

B) The syntax—checker for your ADA programs

This program tests your ADA programs for syntactic

correctness. If you are not sure what the syntax
of the ADA programming language is, refer to the
text book.

C) The semantics—-checker and code generator for your
ADA programs.

The program checks your ADA programs for syntactic
correctness and a creates a very fast assembler

program.

D) The assembler

The assembler can be used together with the ADA
compiler, or may be used separately from it. You
can use it to assemble the assembler programs
produced by the ADA compiler or your own machine

language programs.

- ii -

Abacus Software ADA Training Course

E) The disassembler

With the disassembler you can convert op—codes in
the computer’s memory back into the assembler
mnemonics. This allows you to analyze machine

language programs.

The text book:

The operation of the programs are described in detail in
this text. You will receive an introduction to the ADA
language including examples, problems, and the corresponding

solutions.

This is a true training course with which you will acquaint
yourself with data processing fundamentals. The knowledge

acquired can also be transferable to other programming

languages.

You will not only learn the basics of a new language, ADA,
but also how programming-language compilers work, what
methods they use, and what they in principle can and cannot
do.

You will certainly become better acquainted with your
computer and even enter into the world of machine language
programming. The most important utilities necessary to do

so are included in this training course.

- iii -

Abacus Software ADA Training Course

1. The Editor

The editor is the program that you will be using most as a
user of the ADA Training Course. You will write your

programs with it and carry out compilation from it.

The editor offers a number of other capabilities as well. 1t

can:

save your programs to diskette
- load your programs from diskette
— print your programs
- inform you of memory space remaining
- display the disk directory
~ scratch files on the diskette

- transmit commands to the disk drive

Let’s try out the various functions of the editor so that we

may acquaint ourselves with the most important program in

the ADA training course.

Turn on your computer, disk drive and (if present) printer.
Insert the distribution diskette into the disk drive (By
distribution diskette we mean the disk which you received
with your Ada training course). Load the editor with the

command :

LOAD"EDITOR",8,1 <RETURN>

After about a minute the program will be completely loaded.

Abacus Software ADA Training Course

Remove the distribution diskette from the disk drive and
replace it with a new formatted disk or one containing data

you no longer need. Press <RETURN>

The START menu appears on the screen.

The editor has a total of three menus:

Menu — START
- COMMANDS
- WRITE/EDIT

These three menus can be reached with the keys <@>, <%>, and
<T> (up arrow) respectively. These keys are operational when
the computer has finished the task you have instructed it to

perform.

The options in the START menu allow you to select a function
so that all of the keys repeat and to select the colors for

the characters, the screen border, and the background. Press

the <fl> and then select your preference in color
combinations. Now press the <%¥> key.
The COMMAND menu appears on the screen. From this menu you

can access all of the general commands listed below.

~ save your programs on diskette

- load your programs from diskette

- print your programs

— inform you of memory space remaining
- display the disk directory

- scratch files on the diskette

- transmit commands to the disk drive

Abacus Software ADA Training Course

The <%> (up arrow) key brings us to the WRITE/EDIT menu.
This menu allows you to create a new program or edit an

existing one.

We will now discuss the menus individually. Each menu option
can be selected by pressing the appropriate key. Press the
<(@> to return to the START menu.

1.1. START menu

By pressing the function key <fl> we can make all of the
keys repeat, meaning that holding a key down will cause that
character to be entered repeatedly. The <f3> key allows us

to turn this feature off.

The function key <f2> (obtained by pressing <(SHIFT> and <fl>
at the same time) changes the color of the screen border.
Simply press <f2> wuntil you get the color which is most
pleasing to you. <f4> changes the color of the background in

a similar manner and <{f6> changes the character color.

1.2. WRITE/EDIT menu

This menu is accessed with <?> (up arrow). Press the <T>

(up arrow) key to enter the WRITE/EDIT menu.

Now we will learn how we can create and edit a program with
the editor. We will go through each command of the editor

and see what effects they have.

Abacus Software ADA Training Course

The operation of a key pressed in error can be undone by
immediately pressing the <RETURN> key. Wherever a
particularly damaging error may occur, the computer will ask

to make sure that the function is really intended.

Pressing the <(f2)> key prepares the editor for entering a new
program. A message confirming the selection of the option
"Input" appears on the screen followed by three 1lines
containing other information with which we need not concern
ourselves with at the moment. The number "00010" appears in
the fifth line followed by a reverse question mark. This is
the first line number of our text. These line numbers are
irrelevant to the Ada program! They are used only so that
the user can quickly find a given program line. This Ada
Training Course makes references to the line numbers to make
corrections easier. Behind the line number is a field with a
question mark in the color which we chose for the
characters. This is the CURSOR. It indicates the place at

which the next input will appear. Please enter the sentence:
"This is supposed to be an Ada program."

If you made a mistake while typing, you can erase the last
character or with repeated use, the last characters, on the

line by using the DEL (delete) key.

The editor will accept only those characters which make
sense in an Ada program. It works as a filter, filtering out
nonsensical input. If the cursor fails to move and no
character is entered, you have pressed an illegal key or key

combination.

Abacus Software ADA Training Course

We move to the next input line by pressing the <(RETURN> key.
The 1line number "00020" appears on the screen. Assuming we
do not want to enter any more lines, we can exit the input
mode by pressing the <RETURN> key again. Please press the
(RETURN> key now. The computer confirms the exit from the
INPUT mode with the message:

XXX Input done b3 3 $ 4

And the cursor disappears.

In place of our sentence we could have entered an Ada
program consisting of a set of instructions. The sentence
"This is supposed to be an Ada program." will suffice in

order to acquaint ourselves with the editor.

Please press the <f1> key now. The <f1l> key returns us to
the start of the text and informs us of this with the

message:

F3TY Beginning £X%%
Please press the <f7> now. With the help of the <f7> key we
can we can view our program line by line. Please press the
<f7> again. At the end of the text the computer responds
with the message:

*Xxx End XXX

Press the <T> (up arrow) key now. The <?> (up arrow) key
will return you to the WRITE/EDIT menu.

Abacus Software ADA Training Course

You can go immediately to the end of the program by
pressing <f3)>. Function key <f5> allows you to step
backwards through the program. Feel free to try out each of
the keys and become accustomed to their use. If you forget
any of the keys meanings, you can see the WRITE/EDIT menu

again with <T> (up arrow).

If you want to add additional lines to the program, press
the <f2> key. Press the <(f2> key now. The editor gives you
the next possible 1line number and allows you to enter
additional lines. Enter the 1line "Sentence 2", press
<RETURN> and enter the line "Sentence 3" , press <RETURN>.
To exit the input mode press <RETURN>. The computer leaves

the input mode when you press <(RETURN> over an empty line.

If you want to edit an already existing line, do the
following: List the line to be changed using <f5)> or <f7>
and then press <f6>. The cursor will appear in reverse. You
can move through the line with the cursor keys and change
characters by simply writing over them. When you are done
editing the line, press <RETURN>. Try changing the number
"3" in line 00030 to "4". To do so press the <f56> key to
list line 00030 then press the <f6)> key. Check to see if
line 0030 is changed by entering the menu mode <%> (up
arrow), then list the complete text by pressing the <f7> key

four times.

The editor also allows us to insert lines between existing
lines. If, for instance, we want to insert a line between
the second and third lines, we list line two (0020) and then
press <f8>. Do so now. The computer confirms this by
printing the line number "00021" and the cursor reappears.

We enter the line as we did before under the "Input"”

Abacus Software ADA Training Course

command. Something like "This line follows line 00020". We
terminate the input with <RETURN> and the 1line number
"00022" appears . We again exit this mode by pressing
<RETURN> before typing anything else on the line. Up to nine
lines can be inserted since the editor numbers the lines by
ten. The editor saves the inserted lines differently and
inserts them into our program at the end of the command. It

gives us the appropriate messages on the screen.

If we would like to have all of the lines numbered by ten
again, we simply press <f4>. Using this option we can insert
as many lines as desired. Do so now, then 1list the

renumbered text using the <f7> key.

There are two possibilities for erasing 1lines: with the
"pound"” key or the left-arrow key. You can erase individual
lines with the pound key and entire blocks with the left
arrow., Pressing the pound key erases the line which you last
listed with <£5> or <£7>. List line 00030 and then delete
it wusing the "pound key". Check to be sure line 00030 was
deleted, then renumber the text using the <f4)> key.

Now press the left-arrow key to delete a range of lines.

After pressing the left-arrow key you will be asked "from
line :", you must then enter a line number and press
<RETURN>. Enter 20 and press <RETURN>. The question "to
line :" is answered in the same way. Enter 30 and press

(RETURN>. List the text to be sure the lines "from line 20"

"to line 30" were deleted.

With this we complete our discussion of the WRITE/EDIT menu
and all that remains is the COMMAND menu.

Abacus Software ADA Training Course

1.3. COMMAND menu:

In order to follow the examples in this section, you should

have at least one line of text in memory.

Press <%> and we enter the COMMAND menu.

First we would like to ask the computer how much space is
left in memory so that we know how much we can add to our
program. The function key <f7> does this for us. Please
press the <f7> key now to view the available memory. The
computer responds with the message (free memory may be
different):

XXX 20045 Characters free X*Xxx

If you are certain that you no longer need the contents of
the diskette in the disk drive, you will want to format this
diskette and become acquainted with the function "Send
command to disk drive.” Press <f6> and the following

message will appear:

*XKX Command to disk XXX%
*X%% Command 7

We enter: "n:data,01" and press the <(RETURN> key, thereby
sending the command to format a disk to the disk drive. The
name "data" and the identification code "01" are placed on

the disk. The disk drive requires some time to execute this
command. If you made an error while typing the command, the
drive will usually respond with a "SYNTAX ERROR." You simply

correct the command in this case. 1In general, you can

Abacus Software ADA Training Course

transmit any command found in chapter 4 of the disk drive

manual to the drive in this manner.

We need only press the <(fl> key in order to save our Ada
program to the diskette. You will be asked for a name. After
entering this name, press <RETURN> and the disk drive will

proceed to save the program.

Press <f5> to make sure that the file was saved correctly.
You will receive information concerning the name of the
disk, its identification number and the DOS version the disk

was formatted under.

A program can be loaded back into the editor with the <£3>
key. You are asked for the name of the program, and after
this input and subsequently pressing <(RETURN> the command

will be executed.

Programs on the diskette can be removed with the command
"Delete file." After pressing <(f8> you are asked for the
name of the file which is to be erased. After entering the
name of the file and pressing <RETUKN> the file will be
deleted from the disk.

The <f4> key is used to print a program on the printer. You
must enter a comment which appears as a header for the
listing. Leading spaces may be entered by pressing <(SHIFT>

and the space bar together.

With the function key <f2) we start the Ada compiler. The
program currently in memory is compiled. You will be asked
if you want to first save the program because the memory

will be cleared after the compiler has done the first part

Abacus Software ADA Training Course

of its work. See the following section "Using the compiler”

for more information.
This concludes the section on the Ada editor. It would be a

good 1idea to practice using the editor, so you may become

accustomed to using it.

- 10 -

Abacus Software ADA Training Course

2. Using the compiler

After you have written a program with the editor, enter the
COMMAND menu and press the <(f2> key. You will be asked if
this key has been pressed in error. If you enter a character
other than "y" and press <RETURN>, the command will be
terminated. The compiler will then ask if you would like to
include a TRACE function on the compiled program. This will
cause the compiled program to print the sequence of line
numbers from the Ada source code as it executes. Unless you
are having problems with a program the usual answer is NO.
When you press <RETURN>, you will then be asked if you want
to save the program. This can be skipped by entering a
character other than "y" and pressing <RETURN)>. If you press
only <RETURN>, you must give a name for your program. If a
program by the same name is found on the disk, it will be

erased and the new program saved in it’s place.

After saving the program (or skipping this option), the
compiler begins with the lexical analysis. When this is
done, the computer will require the distribution diskette in
order to load the syntactic analysis program. After this

program is loaded you must reinsert your data disk.

After the the syntactic analysis the computer again requires
the distribution diskette in order to load the semantic
analysis program. Then your data disk is again needed 1in

order to continue the compilation.
If an error was encountered during the syntactic analysis of

your program, you can load the editor directly in order to

correct the program.

11

Abacus Software ADA Training Course
The program for semantic analysis creates an assembly
language program with the name "ADA.SRC".

If the semantic analyzer discovers an error, Yyou can reload

the editor at the end of the semantic analysis.
If the program compiled successfully, 1load the assembler in
order to assemble the ADA.SRC program. A third option is to
end the program and load ADA.SRC into the computer.
Load the assembler with:

LOAD "ASSEMBLER",8,1
Load the assembly language program with:

LOAD "ADA.SRC",8
If you load the assembler, you will be asked for the name of
the program which you would like to assemble. If you press
<RETURN>, ADA.SRC will be assembled. You can also enter the
name of a different assembly language program, however.
The finished machine language program receives the extension
".0BJ". A machine language program created from an Ada
program can be loaded with:
LOAD "ADA.OBJ",8,1

and your own programs with:

LOAD "name.OBJ",8,1

- 12 -

Abacus Software ADA Training Course

"ADA.OBJ" can be started with RUN, your own programs
with SYS start-address.

Ada on the Commodore 64 is very disk intensive so it is a
good idea to re-format your data diskettes at regular
intervals. Remember that reformatting a disk removes all
information from it, so don’t do this to disks which still
contain information you might want. It has happened to me
that the disk drive can no longer properly read the files on
the diskette because the read/write head is misaligned. This

can produce quite peculiar compilation results!

- 13 -

Abacus Software ADA Training Course

{This page left blank intentionally}

- 14 -

Abacus Software ADA Training Course

3. About the Ada training course

In order to better understand the contents of this training
course, I would first like to present the goals I had when I

wrote this training course package.

The goal of the Ada training course is to acquaint you with
a structured programming language. The language at hand is
the very new language Ada. You will become acquainted with

fundamental structures which are present in most modern

programming languages. The training course is not tied
exclusively to Ada; you will also learn things about your
CBM 64.

A large portion of the training course is concerned with
programming in assembly language and the use of operating
system routines. This is because the assembler serves as an
interface between the "higher level" programing language Ada

and the 6510 microprocessor which forms the "heart"” of your
computer.

The operation of the assembler routines will give you
valuable insight into how you can write your own assembly
language programs. The assembler and disassembler programs

included allow you to begin immediately with this.

Thus the training course operates on two planes, the plane
of the high-level programming language and the plane of
machine language. One seeks to develop a language with which
one can program easily and elegantly, with whose help
programs (sets of instructions) can be written which can be

understood by others.

15

Abacus Software ADA Training Course

Our sets of instructions must be carried out by
microprocessors. In the construction of the microprocessors,
the goal is to manipulate memory locations and process their

contents as quickly as possible.

The goal of our course can be abstractly formulated as
follows: Proceeding from an initial condition of our memory
locations, their contents are to be conveyed to a desired
condition with the help of the program. The microprocessor
should carry this out as quickly as possible.
Microprocessors, however, understand only their own machine
language and since their are many different microprocessors,
their are also many different machine languages. If one then
wants to program in a higher-level language, some connection
between the high-level language and the machine language of
the microprocessor is required. The compiler represents this
connection. The compiler is a program which is designed to
work with the microprocessor. It translates our program into
the machine language of the processor in question. A
compiler generally consists of several programs which
convert the the program to be translated into machine

language step by step.

If one wants to write a compiler which will run on more than
one computer (microprocessor), a procedure like the
following will help him to do so: One translates the high-
level program into the assembly language of a "fictitious"
microprocessor. A microprocessor which does not exist, but
which has the fundamental properties of real
microprocessors. From this language it is no great step to
the machine language of the individual microprocessor. For
each new microprocessor, "only"” this portion of the compiler

need be rewritten to make the entire compiler work. One can

Abacus Software ADA Training Course

use the fact that the machine languages of the various
microprocessor are related. For our compiler, this interface

is for the 6510 microprocessor.

You can learn how the programs which create this assembler
code operate in the sections concerning the operation of the
compiler. You will 1learn how programs can be in the
situation to analyze other complex programs. A few sentences

about the individual analysis steps:

The program for lexical analysis checks all Ada programs for
lexical correctness. The syntactic analysis works with a
grapmar which represents a large portion of the Ada
definition. It can check almost all programs used in normal

work for syntactic correctness.

Ada is a very young language which has been changed in parts
many times over the last years. So far, complete versions of
Ada are only available for mainframe computers, and as far
as I know, only test versions are available. This is
attributable to the complexity of the language. With this
background it is quite nice to be able to check many
programs for syntactic correct..ess. During the development
of the syntax checker I have checked a variety of programs
from Ada books for syntectic correctness and with many
programs, which probably could not have been tested before,

discovered discrepancies.

There are stringent limitations on the subsequent semantic
check and the creation of the assembly language programs.
This is first of all due to the fact that the syntactic
checking of Ada programs is very time-consuming, and second

because of the structure of the compiler itself. Since all

- 17 -

Abacus Software ADA Training Course

of the compiler programs cannot fit into memory at the same
time, the programs run in sequence. This means that
information required by programs following one another must
be saved on disk. Each program works only with the
information of the previous program. Memory can be saved
this way but in order to create a piece of an assembly
language program, all of the necessary information must be
present. But because memory space must be saved, of the
excellent capabilities of Ada, only those which can be made

to work under these limitations are included.

I hope that I have attained my goal of offering you an
elegant option for creating short, fast assembly language

programs.

In addition it is possible to combine several programs with

each other and to address Ada programs from BASIC.

-~ 18 -

Abacus Software ADA Training Course

4, Writing our first Ada program

After you have loaded the editor and started it, select the
menu WRITE/EDIT and enter the following program (the
" [1]

underline character as in ADA_]l is obtained by pressing

the Commodore key and the P key at the same time.):

00010 procedure ADA_1 is

00020 -~

00030 ~-- The data objects that our program
00040 -- uses will be declared here.
00050 -—-

00060 begin

00070 --

00080 -- The executable statements
00090 —-- of our program appear here.
00100 -—-

00110 null ;

00120 --

00130 end ADA_1l ;

This is the smallest possible Ada program (without the
comments). It has the name "ADA_1". The name appears at the
start of the program and at the end. It is not absolutely
necessary at the end, but when it appears it must be the
same name as at the beginning. A discrepancy will be seen as
an error by the compiler. It is a good idea to include the
name at the end of the program as well as at the beginning
so that you always know the program is at an end. This is
not necessary for small programs, but we want to learn how
to write large programs clearly and use the capabilties
which Ada offers.

- 19 -

Abacus Software ADA Training Course

The program begins at the keyword "procedure”. Keywords are
words which have a predetermined meaning in Ada. Keywords
are part of the language. The keyword "procedure”" means that

a program to be executed begins at this spot. -

After "procedure" comes the name of the program, which we
may choose freely. The name chosen may not be an Ada keyword
because keywords are predetermined and therefore protected.
Names of data objects may and should be longer than the
maximum of two letters to which we are accustomed to in
BASIC. Therefore it is possible to give sensible and
suggdestive names to data objects. This increases the
readability of a program. Names (also called identifiers)
can be a maximum of 250 characters long. In practice, vyou
will probably not reach this limit, but it is given for the
sake of completeness. Identifiers must begin with a letter
and may contain letters, digits and the character "_". This
is the wunderline character (Commodore P) used to separate -

words in the identifier, making it easier to read.

The computer does not distinguish between upper and lower
case, "procedure” or "PROCEDURE" or "PROCedure” all have the
same meaning as far as the compiler is concerned. To easily
distinguish Ada keywords we will write the keywords in

boldfaced lower case.

A separating character must be between keywords and
identifiers. A space is a separator; we will learn others
later.

Comments in Ada are denoted by two consecutive minus signs
(--, hyphens, dashes). Comments make use of the entire line. -

Ada instructions can not follow a comment in a line.

- 20 -

Abacus Software ADA Training Course

Examples of valid and invalid comments:

~— This is a valid comment
-- Comments can extend over several

—— lines, or may be empty

~ - This is not a valid comment!
No spaces may be between the minus signs.

Back to our example: After the name of our program follows
the keyword is. We will later put the data objects
(variables, constants, ...) which our program will use

between this word and the keyword begin.

After begin follows the part of the program which contains
the executable instructions. These are instructions which
tell the computer to perform a specific action. The
instruction I have chosen here is the instruction null. This
instruction serves as a place holder in Ada. We will use it
wherever an Ada instruction must be, but we do not yet know
which instruction we will chose, or when the computer should

execute the null instruction.
Ada instructions are ended with a semicolon.

The program ends with the keyword end. The name of the

program follows, terminated by a semicolon.

You probably never thought that one could say so much about

a program which doesn’t do anything.

21

Abacus Software ADA Training Course

If you wish, you can compile this program. It will create a
machine language program which contains no instructions, but

it will allow you to test the operation of the compiler.

- 22 -

Abacus Software ADA Training Course

5. Text output

In this section we will learn how to output text and receive

our first exposure to the compiler.

One property of Ada is that the possibility exists to break
complex problems down into smaller ones. One writes a
program which we call in ADA a package for each smaller
program and then assembles the total solution out of these
partial ones. The advantages of this are clear: We write a
program for a specific problem, test it out, and save it.
For the moment all that interests us is what data must be

passed to the program in order to get certain information

back. The commands the computer executes to do this are
unimportant for us. Furthermore, we need no longer give any
consideration to this partial solution; we only wuse it.

Several persons can work on one large program without one
being dependent on any other. The programmers simply agree
on the functions of the program parts and the manner 1in
which they are accessed and then they start programming

independently.

The program which is responsible for the input and output of
data is also such a package. It is agreed wupon in the

' which means that

language as a so-called "standard package,'
it is part of the equipment of the compiler. This package
must be rewritten for each computer, so that the same
commands perform the same operations in each implementation
of the language. The agreed-upon scope of this package is
too large for the CBM 64. I have included the capabilities
for you which were most important to me, without making this

package consume the entire memory of the computer.

- 23 -

Abacus Software ADA Training Course

Don’t worry—--you will find everything you need for writing

useful programs.

If we want to use the input/output package, we must inform ‘.ﬁ
the compiler of this. This is done with the commands:

with TEXT_IO; use TEXT_IO;
The package for text input/output is called "TEXT_IO". These
commands must be at the start of the program. The with
command must appear before the keyword procedure. The use

command can also appear at other places.

Let us begin with text output.

The predetermined receiver of output is the screen. If we
want the sentence "Hello, this works quite well!" on the
screen, we must write the following program: -’
00010 with TEXT_IO; use TEXT_IO0;

00020 --

00030 procedure OUTPUT_1 is

00040 --

00050 begin

00060 --

00070 PUT ("Hello, this works quite well!");

00080 --

00090 end OUTPUT_1;

The command which we use to output strings (text) is called
PUT. PUT is not a keyword, but it has a specified meaning

in connection with the previous with and use commands. This -

command will be the same in all implementations of Ada.

- 24 -

Abacus Software ADA Training Course

We place the output text in parentheses and enclose the
actual string in quotation marks. This is called a "string
literal” in Ada. There also "character literals” in Ada.
These are individual characters and are enclosed in
apostrophes in Ada. For example, 'A’ or 'h’ or ’_’ are

character literals.

The output of characters is done in the same manner as the

output of string literals.
PUT ('b’) ;
The PUT command outputs the character or string at the

current position of the cursor. At the end of the command

the cursor is placed at the next output position.

If you want to output a character or string literal and set

the cursor at the start of the next iine, use the following

command:
PUT_LINE ("...... ")
or PUT_LINE (*.*);
The periods stand for a character or string literal. To

place the cursor one line lower, end the output on the

current line with this command:

NEW_LINE ;
To skip lines or to print blank lines, use the command in
following form: The number must a natural number (integer

greater than zero). (NUMBER-1) lines will then be printed.

- 25 -

Abacus Software ADA Training Course

Example:

NEW_LINE (4) ;

This ends the output on the current line and prints three

blank lines.

In order to position a cursor within a line, use this

command:

SET_COL (column);
The cursor is placed at the column specified in place of the
word "column". Example: We want to place the cursor at
column 35.

SET_COL (35) ;

The output can be sent to the printer instead of the screen

with this command:

SET_OUTPUT (printer) ;

Now all output will be sent to the printer. Output can be

redirected to the screen with:

SET _OUTPUT (screen) ;

Make sure that you do not direct the output to the same

device twice in a row. The compiler can first recognize this

error at execution time, after it has compiled the entire
program, at the time you have started the machine language
program.

- 26 -

Abacus Software ADA Training Course

Exercise:

We now have learned enough in order to write a small Ada
program. Solve the following task, one possible solution can
be found in the "Solutions" section. The solution has the
name "OUTPUT 2". The given solution does not mean that our
problem can only be solved in this manner or that it is
necessarily the best solution. It means only that it is the
solution which I have worked out for you. Write a progranm
which outputs the following sentences in the given form:

1. Output the string literal "This is our first task."

2. Move to the next output line.

3. Output the string "This string starts in the second line

and extends into line number "

4. Output the character '3’ directly behind the previous

string.

5. Output 5 blank lines.

6. Output the line "Now everything goes to the printer.”

7. Direct the following output to the printer.

8. Output "Is the printer working?"

9. Switch the output back to the screen.

10. Output the character ’'E’ in column 35.

- 27 -

Abacus Software ADA Training Course

{This page left blank intentionally}

- 28 -

Abacus Software ADA Training Course

6. Screen control

The following capabilities are not part of the Ada standard
but our computer places them at our disposal, so it seems a

shame not to use them.

These capabilities are very interesting because a compiled
program executes these functions very quickly. They are so
fast in part because neither the video interface chip (the
device responsible for the s8creen output) nor your
television, to say nothing of your eyes, can follow an
output stream which consists only of these functions.
Programs with these functions are executed with maximum

speed, very quickly indeed in comparison with BASIC.

Our Ada program uses the CBM-64 operating system routines
for these functions. I have written a package for the CBM-64
called CBM_64 so that you can use these functions. Please
include this package at the start of all your programs in
the future.

with CBM_64 ; use CBM_§4;
The following functions are available for screen control:
SET_ROW (line);
This command is related to the command SET_COL. The command
SET _ROW is not included in the Ada standard, however.

SET_ROW sets the cursor to the given line. You can choose a

line number between 1 and 24.

- 29 -

Abacus Software ADA Training Course

Example: Set the cursor to line 15.

SET_ROW (15);

We can clear the screen with the command:

SCREEN_CLR ;

We set the cursor in the upper left-hand corner of the

screen with:

CURSOR_HOME ;
The following commands allow us to change the color of the
screen border, background, and characters. For the sake of

simplicity I will enumerate all of the possibilities.

Note the way each color 1is designated, otherwise the

compiler will respond with "Unrecognized color".

Selecting the type (character) color:

SET_TYPE (black)};
SET_TYPE (white);
SET_TYPE (red);
SET_TYPE (green);
SET_TYPE (blue);
SET_TYPE (purple);
SET_TYPE (yellow);
SET_TYPE (cyan);

Abacus Software

Selecting the border color:

SET_BORDER
SET_BORDER
SET_BORDER
SET_BORDER
SET_BORDER
SET_BORDER
SET_BORDER
SET_BORDER
SET_BORDER
SET_BORDER
SET_BORDER
SET_BORDER
SET_BORDER
SET_BORDER
SET_BORDER
SET_BORDER

- 31 -

P N . Y e T T T T T e T

black)};
white };
cyan };
red);
purple);
green);
blue);
yellow);
orange);
brown);
light_red
grey_1l);
grey_2);
light_gre

ADA Training Course

en);

light_blue);

grey_3);

Abacus Software

SET_BKGND
SET_BKGND
SET_BKGND
SET_BKGND
SET_BKGND
SET_BKGND
SET_BKGND
SET_BKGND
SET_BKGND
SET_BKGND
SET_BKGND
SET_BKGND
SET_BKGND
SET_BKGND
SET_BKGND
SET_BKGND

Selecting the background color:

P e T e T T e T R T T e T

black);
white);
cyan);
red);
purple);
green);
blue);
yellow);
orange);
brown);
light_red
grey_1l);
grey_2);

ADA Training Course

)

light_green);
light_blue);

grey_3);

- 32 -

Abacus Software

Exercise:

Write a program which does the following:

The

Clears the screen.

Set the border color to "grey_2"

Set the background color to "white"

Set the cursor in line 10, column 20.

Output "L 10, C 20" in black type.

Set the cursor in the upper left-hand

screen.

solution for this task can be found

"screen control.”

Try

under

corner

this out and see how fast your CBM-64 can be.

be surprised.

- 33 -

the

of

ADA Training Course

the

name

You will

Abacus Software ADA Training Course

{this page left blank intentionally}

- 34 -

Abacus Software ADA Training Course

7. Data objects

By data objects we mean objects in our program to which we
can @assign values. We distinguish between constants and

variables.

Data objects are assigned a specific type. They then assume

the characteristics of that type.

8.1 Types:

We will be working with three different data types in our

Ada training course:

Type : INTEGER

This data type represents all whole numbers in the range
-32768 to +32767.

Type : FLOAT

This data type represents all floating-point numbers in the
range +/-1.701411183E+38 and +/-2.93873588E-39.

Type : STRING

Objects of this type can be assigned strings of characters

up to 80 characters long.

35

Abacus Software ADA Training Course

Constants:
Constants are objects which assume a value at their
declaration. This value cannot be changed during the course

of the program. The compiler checks for this and refuses a

value assignment.

Constants of any of the previously named types can be

declared.

Examples:

Constants of type INTEGER:

INTEGER_1 : constant INTEGER := 15;
START_QUANTITY_CARS : constant INTEGER := 3576;
ACCELERATION_FACTOR : constant INTEGER := -15;

The declaration is constructed as follows:

At the beginning of the line stands the name or identifier
of the data object. Then follows the colon and the keyword
constant. Next comes the type identifier and, preceded by a

colon and equals sign, the value our constant is to have.

With the declaration of any data object it is possible to

define several objects at once.

Example:
OBJECT_1, OBJECT_2, OBJECT_3 : constant INTEGER := -1000;

The data objects are separated from each other by a comma.

- 36 -

Abacus Software ADA Training Course

Constants of type FLOAT:
FLOAT_123 : constant FLOAT := -3.98E-22;
PI : constant FLOAT := 3.1415;

SHERRY, LIQUEUR, WHISKEY : constant FLOAT := 35;

Constants of type string:

STR : constant STRING := "pearl";
ADDRESS : constant STRING := "Grand Rapids";
SNTNCE_START, SNTNCE_END: constant STRING := "Hi there!";
For constants of type string, the amount of memory taken up

by the constant depends on its length.

When we declare data objects which will have only one value
throughout the program and are never to be reassigned, we

declare these as constants,

If we want to perform calculations and assign a value to a
data object during the course of the program, we need
variables. These objects can be defined and redefined during
the execution of a program. They can also be assigned an
initial value. If we are starting our program, the variables

are assigned values.

Variables of type INTEGER:

SUSAN : INTEGER := 22;
PETER_MEIER : INTEGER := 18;
SAM, JOE, ANN : INTEGER := 172;

- 37 -

Abacus Software ADA Training Course

Variables of type FLOAT:

PRICE : FLOAT ;

SUM : FLOAT := 2E+10;

PROJ, EXIST, MOVE : FLOAT := 0;

Variables of type string:

FIRST_NAME 1 : STRING:= "Mike";
FIRST _NAME_2, FIRST_NAME_3 : STRING:= "Harold";

LAST_NAME : string;

Now we know how data objects are declared.

The types which you have become acquainted with are
predefined in Ada. They belong to the language standard. An
Ada compiler for larger computers would have additional data
types available. Also missing in this training course is the

ability to form user-defined types from those already

existing. Due to memory limitations these were not
implmented in the Ada Training Course compiler, but you may
run the lexical analysis and syntactical analysis on
programs using the entire ADA language. You will not be

able to run the semantic analysis or compile these programs
on the CBM-64.

- 38 -~

Abacus Software ADA Training Course

Exercise

Write the declaration portion of a program to work with

following data objects:

1. A whole number constant with the name WHOLE and

value -1.

2. A floating-point number with the name FLOATP and
value 0.3E-6.

3. A string constant with the name STR and the value

there

4. An integer variable with the name INT_VAR.

the

the

the

"Hi

5. Two floating-point variables with the names PRICE_CHEESE

and PRICE_SAUSAGE and the initial values 0 and 0.

6. A string variable with the name HOUSENAME and your last

name as the initial value.

The model solution has the name "DECLARATIONS".

- 39 -

Abacus Software ADA Treining Course

{this page left blank intentionally}

- 40 -

Abacus Software ADA Training Course

8. Data input and output

The input and output of data is handled by the computer—
dependent package CBM_64. Don’'t forget to specify this

package before the declaration portion.

We use the following command to read data objects from the

keyboard:

GET (data object);

You replace the words "data object" with the name of a
variable to which you want to assign a new value. The
program then stops at the point in the program where this
command is found and requests input from the keyboard with a
question mark (?). Be sure that you enter a value of the

appropriate type.

In order to display the values of data objects on the

screen, use the following command:

PUT (data object);

You are already familiar with the PUT command from text

output.

It is good style to make inputs immediately visible with an
output (echo the input) in order to provide a check. Also,
do not forget to comment your programs so that you can

understand them later. Take a look at the following example:

- 41 -

Abacus Software ADA Training Course

Example:

00010 with TEXT _IO0; use TEXT_IO;
00020 with CBM_64; use CBM_64;

00030 ——

00040 —- Example for the input and output of data.
00050 -- The name and year or birth of the user
00060 —- will be entered and printed.

00070 --

00080 procedure DATA IN_DATA_OUT is

00090 --

00100 —-- Declaration of the string variable for
00110 -- the name of the user.

00120 —--

00130 NAME : STRING;

00140 --

00150 —— Declaration of the integer variables for
00160 —- the birth year of the user.

00170 -

00180 , BIRTH_YEAR : INTEGER;

00190 --

00200 begin

00210 -~

00220 SCREEN_CLR ;

00230 —-

00240 SET_COL (5);

00250 --

00260 PUT (" Please enter your name:")};
00270 --

00280 SET_ROW (8); SET_COL (4);

00290 --

00300 GET (NAME);

00310 -

- 42 -

Abacus Software ADA Training Course

00320 NEW_LINE; PUT (" Your name is :");

00330 PUT (NAME);

00340 —-

00350 NEW_LINE (3);

00360 PUT (" Please enter the year or your birth:");
00370 --

00380 NEW_LINE; SET_COL (4); get (BIRTH_YEAR);
00390 NEW_LINE (2);

00400 PUT_LINE (" You were born in the year :");
00410 PUT (BIRTH_YEAR);
00420 —-

00430 end DATA_IN _DATA_OUT ;

As you have noticed, more than one instruction may be
placed on a 1line in Ada. The semicolon separates the
instructions from each other. You should make sure that the
program does not become too cluttered. In some cases it is
even advisable to place instructions which belong together

on a single line.

Exercise

The solution has the program name "output 2".

Write a program which asks for your body weight and then

outputs this again.

- 43 -

Abacus Software ADA Training Course

{this page left blank intentionally}

- 44 -

Abacus Software ADA Training Course

9. Value assignment

Ada 1is a strongly-typed language, which means that a data
object of a certain type may only be assigned values which
are compatible with that type. A variable of type integer
may not be assigned a floating-point value because the
floating point value would first have to be converted to an
integer before the assignment. The individual types are
logically distinguished. Not only variables but also
operations such as addition, multiplication, etc. are

logically distinguished by type.

Nevertheless, it 1is often necessary to assign the value of
an integer variable to a floating-point variable, for
example., The value of the integer variable must first be
converted to a floating-point value. You can convert the
values of integer variables to floating-point variables and

vice versa. How this is done will be explained later.

First we want to see what a value assignment in Ada looks
like.

Examples:

SAM := TOM + 2;

We assume that both SAM and TOM are data objects of the
same type. If this were not the case, the compiler would
tell us so. On the left side of the value assignment stands
the data object whose value will be changed. Then follows a
colon and the equals sign. This character combination can be

read as ‘"receives the value of." The ":;=" tells the

- 45 -

Abacus Software ADA Training Course

compiler that this instruction is an assignment. On the
right side is an arithmetic expression. At the end follows
the semicolon which signals the end of the instruction. In

our example the data object SAM is assigned the value of the
data object TOM, plus 2.

Exponents in Ada are designated by the string "*x".

Conversion:

Floating-point values can be converted to integer values

with the following construction:

INTEGER (floating-point value)

The value of the data object used in place of "floating-

point value"” is converted to type integer.

The opposite conversion of an integer value to a floating-

point value is accomplished with:
FLOAT (integer value)

Example:
ERIKA is a data object of type integer and JOHN is a data
object of type FLOAT. ERIKA is to be assigned the value of
JOHN, therefore JOHN must be converted to an integer:

ERIKA := INTEGER (JOHN);
This covers the value assignment of types float and integer,

but what about the value assignments of type string?

46

Abacus Software ADA Training Course

Value assignment with data type string:

Here things are done a bit differently than wusual. Data
objects of type string have a length of 80 characters. The
compiler reserves this space in memory. It can therefore
access the individual strings very quickly because it does

not have to search for memory.

We can represent every string variable in the following

form: NAME (1..80). This means that we can access the
places 1 through 80 for this variable. If, for example, we
want to fill positions 1 to 10 with a certain string, we do

it as follows:

PETER (1..10) := "abecdefghij";

At the start of the program execution, all string variables
are filled with binary nulls so that they are considered to
be empty. If you want to return a string to 1its initial

condition, enter the following command:

PETER (1..80) := "";

The following procedure is used to assign string variables

with the values of other string variables:
PETER (5..15) := EDWARD (3..13);
Here the string variable PETER at position 5 is assigned the

value of the string variable EDWARD at position 3. Eleven

characters are copied.

- 47 -

Abacus Software ADA Training Course

If the receiving string is shorter than the sender, the
copied string will be truncated. If the receiving string is
longer than that sent, the string copied is padded with
blanks.

Exercise

The solution has the name "VALUE ASSIGNMENT".

Write a program which perform the following task:

A merchant sells diskettes and wants a program that will
write a bill giving him the total of the purchase, including
sales tax. The name of the customer must also be on the bill
in order to keep the finances straight. Below is a sample

bill. Try to use everything you learnmed in this section.

Sample bill:

Sam Harris bought on 10/05/84
10 diskettes at a price of $ 29.95
4% sales tax 1.20

Abacus Software ADA Training Course
10. Functions:

A number of numeric functions which support the operating
system have been implemented in the CBM 64 package.

The operand, the variable or constant, used for these
functions can be of type float or integer. The syntactic
form is the same for all of the functions. Simply replace
"function name" with the actual name of the function.

Command construction:

VARIABLE 1 := function name (VARIABLE_2);

Examples:

SQUARE_ROOT := SQR (TOM);
SQUARE_ROOT := SQR (4);

The functions:

Function: ABS

The absolute value of the argument (operand) is calculated.

49

Abacus Software ADA Training Course

Function; ATN

The arctangent of the operand is calculated. The operand is

given in radians.

Function: cos

Returns the cosine of the value given in radians.

Function: EXP

Returns the value e ** operand in which e=2.71827183.

Function: INT

The "INT" of a value returns its integer portion
integer function). For example, INT (2.34) is 2,
(-4.6) is 5.

Function: LOG

"LOG" returns the natural logarithm (base e).

Function: PEEK

Returns the contents of the given memory location.

- 50 -

(greatest
while INT

A 4

Abacus Software ADA Training Course

Function: RND

"RND" returns a random number depending on the value of the
argument. If the argument is negative, a new set of random
numbers is produced. This set is dependent on the negative
number, so the same negative value produces the same set of
numbers. If the value is greater than or equal to zero, a

new number will be generated.

Function: SGN

Returns the following values:

-1 if the argument is less than zero.

0 if the argument is equal to zero.

+1 if the argument is greater than zero.

Function: SIN

Returns the sine of the angle given in radians.

Function: SQR

The square root of the value is calculated. The argument

must be positive.

Function: TAN

ww» The tangent of the angle given in radians is the result.

- 51 -

Abacus Software ADA Training Course

{this page left blank intentionally}

- 52 -

Abacus Software ADA Training Course

11. Decision Making

Ada is a block-structured 1language. Instructions which
logically belong together are collected together into a
block. For example, we write the keyword at the beginning of
the executable instructions and the word end at the end of
the program. The instructions in between belong to a

program, they form a block.

Up to now we have only concerned ourselves with programs
which are executed sequentially, meaning that we do not know
how to make a program execute its instructions in an order
other than one pass through all of them, one after the
other. In our previous programs, each instruction was

executed exactly once. We could not skip any instructions.

One often faces the problem of having to choose between two

sets of instructions based on a condition. In English we
would formulate this as follows: "If the condition is
fulfilled, then execute these instructions, else execute
this other set." Two different instruction blocks exist

which make up the structure of this program portion. One
speaks of structured programming if such structures
determine the program. An additional method of structuring
programs involves loops, which we will discuss in the next

section.

53

Abacus Software ADA Training Course

What does a conditiom in Ada look like?
Example:

if HAL > 0 then

-- A set of instructions

-- can be placed here.

-— It will be referred to as block_1.

else
—— Instructions for block_2 can be
~- placed here.

end if;

We can clearly recognize two blocks. At least one statement -’
must be placed in each block, even if it is just the empty

instruction null.

The decision statement begins with the keyword if. Then
follows the condition which determines the branch to the
individual blocks. If the condition is fulfilled, in our
case if the value of HAL is greater than 0, the first block
is executed. The first block is comprised of statements from
the if statement to the else statement. Here the program
execution branches to the instruction following the end of

the decision end if;.

If the condition was not fulfilled, the instructions 1in

block_2 are executed.

- 54 -

Abacus Software ADA Training Course

If no instructions are necessary for block_2, we can place
the instruction null; there. Another possibility is to leave
off this block altogether.

if HAL >0 then

~- instruction block

end if ;
Do not forget the semicolon after the end if because the
conditional is also a statement in Ada and must be separated

from following statements by the semicolon.

The following operators are available for forming the

condition:

\ Operator Meaning
= equal to
/= not equal to

strictly less than

less than or egual to

strictly greater than

vV vV A A

greater than or equal to

Exercise

Ask the user if the sentence "Block structures are great!"”
should be sent to the screen or printer and then do so. The

. solution has the name "DECISIONS".

- 55 -

Abacus Software ADA Training Course

{this page left blank intentionally}

- 56 -

Abacus Software ADA Training Course

13. LOOPS

The loop structure is wused to execute a block of
instructions more than once without having to retype the
block. Let’s look first at the endless loop.

loop

—— A sequence of instructions

end loop;

In Ada one calls this construction the "basic loop." This
is the simplest form of a loop, but also the one you will
need the least. Once you are in this loop you can carry out
the sequence of given instructions as long as you want until
the computer is turned off. Your computer makes use of such
a loop when it is turned on. It waits for a command from you
and returns again to the loop when it has carried out the
command. This interpretation loop is the principal
structure in the computer and all other structures are
subordinate to it. This loop reads the keyboard, it will

not do you any good to escape from this loop.

- 87 -

Abacus Software ADA Training Course

It is possible to escape from an endless loop in Ada with

the following command:

exit loopname when condition;

This instruction means exit the 1loop with the name
"loopname” when the condition is fulfilled. This condition
is similar to a BASIC IF statement. How do we give a name

to a loop?

Example:

ROUND: 1loop

~—~ A sequence of instructions

exit ROUND when A /= B ;

~~ A Not Equal To B "A /= B"

-— A sequence of instructions

end loop ROUND;

- 58 -

Abacus Software ADA Training Course

You must write the name of the loop in at least two places:
before the keyword loop, followed by a colon, and after the
keywords end and loop, followed by a semicolon. In our
“w» example the loop "ROUND" will be exited if the value of A is
different from the value of B, then the exit statement is
executed. The program execution will pick up again after the

instruction "end loop ROUND;".

Take a look at the following example:

OUTSIDE : loop

—-—~ A sequence of instructions

INSIDE : loop
, -
-— A sequence of instructions

exit OUTSIDE when MM <(3;

~— A sequence of instructions

end loop INSIDE ;

end loop OUTSIDE;

\ Both loops <can be exited by proper selection of the exit

criteria in the inner loop.

- 59 -

Abacus Software ADA Training Course

If you want to run through a loop only a few times, Ada

offers the following possibility:

Example:

for I in 1..10 loop

-— the sequence of instructions which is to

-- be executed ten times.

end loop ;
The loop parameter, in our case "I", can only be read within
the 1loop. Upon entry into the loop the parameters will be

defined, and will cease to exist after the completion of the
loop. In our case the loop parameter assumes the values,
one after another: 1,2,3,4,5,6,7,8,9,10. The loop will be

carried out ten times.

- 60 -

Abacus Software ADA Training Course

EXERCISE

You will find the suggested solution under the name "loop"
on the Ada Training Course diskette and in section 27.

Problem Solutions.
Write a program that prints all the even numbers up to

100, and then all the odd numbers from 100 to 200. The

output should be commented.

- 61 -

Abacus Software ADA Training Course

{This page left blank intentionally}

62

Abacus Software ADA Training Course

13. Jumps
Have you already missed the goto command? I believe that
this command is unnecessary, because in principle all the
problems can be solved with sequential procedures,

conditionals, and loops. But there is also a "goto" command
in Ada. You must indicate the place in the program to which
you would 1like to jump. There are no line numbers in Ada
like there are in Basic. The provision for such jump

destination markers is as follows:

<< JUMP LABEL >>

In place of JUMP LABEL insert a name of your own. A jump
label can be inserted before any instruction in the
executable part of your program. The goto instruction has

the following construction:

goto JUMP LABEL;

I probably don't need to put an exercise here for you, an
example of the goto command may be found in the program
named DEMO on the Ada diskette. DEMO.OBJ is the compiled
and assembled version of the DEMO program, you may simple

load and run this program.

- 63 -

Abacus Software ADA Training Course

{This page left blank intentionally}

- 64 -

Abacus Software ADA Training Course

14. The Operation of the Compiler

A section not just for experts

Surely you have asked yourself what actually happens after
you have told the editor to compile a program. I will answer
this on the next pages. For me this is one of the most
interesting parts of data processing. I find it simply
fascinating to discover the means by which a machine is in

a position to analyze a language.

A few things to consider: If you want to express something
in a language, you put the words together in sentences. You
do this whether you are speaking English or writing a
program in Ada. By words in Ada we mean keywords, special
characters, and names. The programs which you pass on to

the Ada compiler are nothing other than Ada sentences.

Ada is an artificially created language, but nevertheless it

is a language which is in the position to form an endless

number of sentences. If you want to take only a certain
length for your programs, then you can set a maximum length
of 5000 sentences. I am convinced that the Ada compiler

in this Ada training courses can never come 1in contact

with all the possible programs of this length.

Even more surprising is the fact that it 1is possible to
write a program (the Ada compiler) that can analyze and
compile all these sentences. You will perhaps say that
this cannot be that difficult, because our language is based
on clear cut, definite rules. We need only to write a

program that knows these rules and analyzes our sentences

- 65 -

Abacus Software ADA Training Course

following these rules. Easier said than done! Do you have
all the rules in your head? Or do you often have to 1look
these things up, as I do? Have you developed certain

methods which you follow when you check whether the program

is in keeping with the rules?

Now, according to which methods does the compiler of
programming languages proceed? You will get to know the
methods which the Ada-compiler proceeds. Programming
languages are compiled using these methods, so don’t
quickly forget what I tell you but keep it in the back of
your mind, for it will clarify many messages the computer is

giving you.

Perhaps you ask why I write about program analysis when all
we want is to compile the programs. You will see that the
information we need in order to compile & program will be
obtained by program analysis. It is noteworthy that the
computer requires more time for the analysis of your program
than for the production of the workable machine language

program.

The program analysis can be divided into three major parts
which are executed one after the other on the CBM-64. If
more memory were available these parts could be executed in
parallel to each other without having to save the data on
the diskette. Saving the data naturally takes time, and
you can cut down on this time in larger computer systems by

the parallel execution of the three parts.

- 66 -

Abacus Software ADA Training Course

The three parts of the analysis are:

1) The lexical analysis

2) The syntactical analysis

3) The semantic analysis

The subjects of parts 1-3 can be roughly summarized as

follows:

The lexical analysis should recognize particular words of
the program and filter out the words which don’t make sense

in Ada.

The syntactical analysis should examine whether a program
follows the grammatical rules of Ada. We will later learn

what this grammar is like.

The semantic analysis checks whether your program basically
makes sense and whether you’ve followed the rules which in

the previous examinations had not been detected.

As you’ve already recognized, the Ada program goes through
ever closer examinations. If the compiler recognizes
mistakes in syntax, then a semantic examination is no longer
necessary. We'll overlook these points in particular wuntil

they’re understandable.

- 67 -

Abacus Software ADA Training Course

{This page left blank intentionally}

- 68 -

Abacus Software ADA Training Course

16. The Lexical Analysis

A program which executes a lexical check is called a
"scanner”. The strongest ally with the lexical examination
in our case is the editor. The scanner’s job is to take only

the characters which result in a sensible Ada-program.

We call upon the scanner when we use the function "Compile
the program"” from the editor. The scanner is part of the
editing program and is already located in the memory of the

computer.

The task of the scanner is to put our program into a
"standard form" which can be processed by the succeeding
program, which executes the syntactical test. To do that
the scanner takes all of the comments out of our program
because they are only for our benefit and are not needed by
the compiler. If spaces appear in the program they are
removed. This does not apply to spaces in character
strings. The scanner prints out the line numbers of the
program and changes all the wuppercase letters into
lowercase. Its main task however is to break the program

into Ada words.

What are then all of the Ada words?

1) Ada keywords, i.e. loop, procedure, etc.

2) The identifiers of the programs

3) The separators, i.e. =, >, etc.

- 69 -

Abac

How
char
foll

When

char

An e

Line

us Software ADA Training Course
does the scanner go about this? It reads the program
acter by character until it encounters one of the
owing cases:
(a) A comment follows (--)
(b) A space follows
(c) A separator follows
(d) The end of the line is reached
it reaches one of these it knows that the sequence of

acters read was an Ada word.

xample:
The program shall be:
00010 procedure LEX EXAMPLE is
00020 —- Example 1 for lexical analysis
00030 A,B : INTEGER ;
00040 begin
00050 A := B,
00060 end LEX_EXAMPLE ;
00010:

The line number 00010 will be printed. The scanner
reads over the spaces after the line number, then

reads procedure and recognizes the space following

it. It enters case (b). The scanner knows that
procedure 1is an Ada word. It does one more thing
though: it determines whether it is a keyword or

whether it is dealing with a word selected by the

user. When procedure is a keyword, a coded message

- 70 -

Abacus Software

will be generated. This message has the following
contents: Here comes a keyword. The keyword is
procedure. This message 1is in reality only two

characters long and can be interpreted by the
following analysis program. We can recognize the
meaning of this action when we talk about the

syntactical analysis.

The spaces after procedure will not be printed.
The scanner then reads "LEX_EXAMPLE", recognizes
the space, notices that the word is not a keyword

and outputs in lowercase letters "lex_example”.

With the keyword is case (d) occurs, the end of the
line is reached. The scanner prints a
corresponding message as for procedure and moves to

the next line.

Line 00020:

The 1line number 00020 will be printed. Then a
comment follows, recognizable by the two minus
signs (--), and the rest of the 1line will be

skipped over.

Line 00030:
The 1line number 00030 will be printed. The
following spaces will overlooked. Since a comma,
also a separator, follows "A," a word ends here.

The scanner recognizes it as one chosen by the user

"o "

and prints "a". And so on...

- 71 -

ADA Training Course

Abacus Software ADA Training Course

Lines 00040 - 00060:

Nothing more will be said about these lines since
we have already covered all of the cases. But you

should "scan" over these lines for practice.
Upon completion the scanner prints the message that the

program is finished and instructs you to insert the

distribution disk.

- 72 -

Abacus Software ADA Training Course

16. The Syntactical Analysis

The program that is responsible for the syntactical analysis

is called the Parser.

The Ada-Parser is the parser called by the scanner after its
work has been carried out. The parser reads the output of

the scanner and checks the program for syntactical accuracy.

First we will <clarify what is meant when a program is
syntactically correct. Every language is based on certain
rules, which determine how sentences are formed out of
words. A collection of such rules is called grammar. Most
of our recollections of grammar come from school, but have
no fear because in programming languages the grammar is much
easier to understand than that for other languages like
English. The reason for this is that with natural languages
we must infer the rules from the language. One examines for
example a thousand English sentences and tries to understand
the construction of these sentences in terms of rules. If
you add to the thousand sentences you will probably have to
add new and different rules as well. We can never be sure
that we have found all the rules. Of course there are

always exceptions to the rules.

This method is not possible for programming languages
because the people who write the compiler don’t know which
programs the user will devise later. The opposite course can
also be taken. We first define what the programming
language should do and then the grammar is developed.
Sentences using correct grammar are syntactically correct,

all others will not be accepted by the parser.

- 73 -

Abacus Software ADA Training Course

In reality the way of proceeding 1is somewhat more
complicated. One would think that once the grammar has been

worked out that the parser should be able to work with this

grammar. Not all grammar can be processed by every parser,
however. The grammar must either be adapted to the parser
or the parser to the grammar. Unfortunately there are

restrictions on the side of the computer because different
parsers require varying amounts of memory space and

compiling time.

With the Ada Training Course compiler I have proceeded as
follows: I have sought a method for the parser which
requires as little memory as possible. Then I devised the
parser and rewrote the Ada grammar so that it is more
workable. This can be said in two sentences, but it
required a great deal of time spent in working out the
details since the inconsistency of the new grammar became

noticeable only after a great deal of computation.

How does the parser check a program for syntactical

accuracy? There are many different methods for doing so.
I'd 1like to present those that the Ada compiler uses. In
the 1literature these methods are known as LL(l) - parsing.

Before we <can understand them a few considerations are
necessary. So that these don’t become much too dry, let’s

get acquainted with these methods by means of an example.

- 74 -

Abacus Software ADA Training Course

16.1 The LL(l) Pleasure Garden Part 1:

We take a spacious garden which we will call the LL(1)
Pleasure Garden. Within this garden there is an array of
amusements such as carrousels, water games, old statues,
etc. By every scene stands a mailbox with an inscription,
designating the amusement. Further in the park is a whole
set of paths and at their intersections, markers directing
the way to the next attractions. We’ll imagine that our
Sunday walk leads wus into this pleasure garden. At the
entrance we receive a package with cards which will mark out
our walk through the garden. We turn up the top card and
follow the signs. For example, card 1:" "monkeyhouse". We
follow the signs which are at the entrance and show us the
way. Arriving at the monkeyhouse we see a mailbox 1labeled
"monkeyhouse”" in which to put our card. After we’ve looked

around we turn up the next card and follow the respective

instructions. So we wander through the garden until we turn
up the card with exit written on it, and the walk ends
there.

Back to the analysis of our program language: the deck of

cards represents our program and on every card is a word of
the program. The garden is the grammar according to which
the program should be written, and the paths through the
garden are the grammatical rules. 1In the section "19. Ada
Grammar" you will find a complete list of applicable grammar

with an index.

We will move through one case and parser the following small

program.

- 175 -

Abacus Software ADA Training Course

procedure A is

begin

null;

end A;

We 1imagine the keywords procedure, is, begin and end in
coded form and imagine the empty spaces as not being there,
this is the form of the program that the parser receives

from the scanner.

After the parser has been loaded and started, the parser
program runs through an initialization phase. Here the
parser prepares itself for its work. The first rules of the
grammar will be read along with others which every program
must fulfill. These rules characterize the entire "future”

of our Ada programs.

The rules read: compilation ::=compilation_1 E_O_F . The
name of the rule is "compilation". The name is the left
part of the rule, the part which stands before the "::=".
On the right side are two different types of words: One

type 1is the name of other rules and the other consists of

Ada words.

This applies with three exceptions:

1) The word E _O_F 1indicates the end of the

program; the scanner adds this word to our program.

- 76 -

Abacus Softyare ADA Training Course

2) If there are rule alternatives they are
separated from one another by the character ":!".
Alternatives mean that the rules are allowed to
split up into more cases. This will soon become

apparent on its own.

3) If an alternative is empty ,it can be
identified by an upper case "L". An empty
alternative in a rule means that the rule cannot be
used.

To "apply"” a rule means to replace the name of the rule with
the right side of the definition of that rule. The choice

of a blank alternative means that the name is simply erased.
The sapplication of the rule "compilation" results in the
following: First we must use the rule "compilation_1",
followed by the word E_O_F. 1If the word "E_O_F" doesn’t

appear then the parser will interpret it as an error.

How then does the rule "compilation_1" appear? It

appears as:
compilation_l ::= context_clause compilation_unit
compilation_1
HE A

The use of "compilation_ 1" allows us two possibilities:

1) The use of the first series, which begins with

"context_clause";

2) The use of the second line, the empty rule.

- 77 -

Abacus Software ADA Training Course

We will consider case 2: we would be finished with the rule
"compilation_1" and return to the rule "compilation". Now
the word E_O_F follows which means that at the beginning of
the program the information must have been given that the
program is already at the end. We proceed through the
grammar in this manner if we want to compile an Ada progranm,
which does not consist of any instructions. The parser in
this case follows the motto "He who does nothing also makes
no mistakes". We are working with our program, however, so

we must take case 1.

Case 1 begins with "context_clause”. Let’s look at this
rule:
context_clause ::= "with"” identifier with_1 *";"

context_2 context_clause 1 L

Line 1 begins with the word "with". To be able to choose

this alternative we must have begun our program with "with".

Now there remains only line 2 with the blank empty
alternative. The rule "context_clause" is thus processed.
How does this appear in the "bookkeeping"” of the parser? It
has not yet noticed this still unprocessed rule and has
marked the corresponding substitutions. For the program
then it has:

compilation ::= compilation_unit compilation_l1 E_O_F

Back to the rule "compilation_1": the next working

rule is "compilation_unit”.

Abacus Software ADA Training Course

compilation_unit ::= "procedure" identifier formal_part
subprogram_spe
"package" package_se

Our program begins with "procedure”, therefore we choose
alternative 1. We have found an applicable rule and
can view the first word in our program as processed. We
move on to the next word. This is "a"". We work out
further the rules of "compilation_unit". 1In the meantime we
must notice the rest of the rules not yet worked out for
compilition. There we must again take up the work when we
are finished with the rule. You may think that this could
go on forever, but it eventually does come to an end,
although this may come after a few hundred steps for even a
small program. That is much too much to execute by hand but
the computer performs this work faithfully and diligently.
In the section "17. Watching the parser do its work"™ you
will find a complete record of our small program. You
should go through this record once because it will clear up

any questions you might still have.

One question I have not dealt with as of yet will lead |wus
into a new section: Suppose the parser comes to a rule with
several alternatives, none of which begin with an Ada word.
Which alternative does the parser follow and according to
which criteria does it proceed? For each alternative in
every rule one can determine which words can occur if a
given alternative is selected and followed. I will list the
words which are possible and are an alternative to the
rule in the following group of words because they fall under

the same category and have similar characteristics. We know

- 79 -

Abacus Software ADA Training Course

that every time we need to find a word it is always the word
that we last encountered. In the LL{(1) pleasure garden
this was always the card which we had uncovered and which
gave us an intermediate destination on our way. The
mailboxes in our garden are now replaced with the Ada words
in our grammar. The guideposts in our garden are the family
of words from which it is possible to select an alternative

to the rule.

I also owe you an answer to the question of why it is
possible to analyze a program labeled with LL(l) Parsing.
Here 1is the answer: We always direct our analysis of a
sentence (program) from the furthest word on the left, which
we haven’t found yet on our way through the grammar. This
explains the two wuppercase "L"s. With the "1" it is a
different matter: 1In each case it sufficies to see only one
word into the program. Therefore we insert the word
procedure and look for this in the grammar, not needing at
the moment any information about the words in our program
which follow after procedure. At first if we have found
procedure, we need the next word in order to find the rest
of the way through the grammar. Perhaps you’ve already run
across this case yourself. It is naturally just another set
of analysis procedures for programming languages. You can
read about the most current procedures for analysis in many

publications.

Until now we have just assumed that the programs which we
analyze will be syntactically correct, but that isn’t just
exactly what we wanted to find out. Let us returnm in this

case to the model of our pleasure garden.

- B0 -

Abacus Software ADA Training Course

16.2 The LL(1l) Pleasure Garden, Part 2

We’ve gone astray!

We run excitedly through the pleasure garden and come to a
new attraction. After we've amused ourselves with it we
look for the mailbox and throw in the card. We turn up the
next card, look for the signs directing the way to our new
goal, 1look in every direction, whirl around once more and
despair! - We can’'t find any signs which show us the right

direction in which to go.

But what is wrong and how can we save ourselves? It could
be that we lost a card, or there could be one too many

cards, or someone could have mixed in a wrong card, or...

What do we do? We assume that the mistake in the cards
happened earlier and only just now showed up. Then we have
to go back and at an earlier crossway look for our
destination. If we assume a card is missing then we must go
further and keep an eye out for the destination. If we
decide that a wrong card has been slipped in then we simply
take the next one and go on as usual. What would you do?
Think it over once. I know you’ll find another way by which
to continue your walk. Will we reach the end or must we
resign ourselves to going back to the beginning? Think over
what method you’re going to use and think about how this

will be carried out by the computer.

We will show how this takes place in the analysis of our
program. The parser has a program which works through to a
certain place, finds a keyword of the grammar or works at a

rule where it must move on to a new word. The parser

Abacus Software ADA Training Course

tackles a new rule in every case. This rule is determined
by an antecedent, so it can choose only between the
alternatives of this rule. It won’'t find the new word 1in

the group of grammar words, so it comes up with an error. We

must now find another way to continue upon our walk.

Which avenues does the parser have to pursue in continuing
the analysis, and which is the most promising? If the parser
wants to go back on its way through the grammar themn it is
important for it to have marked the way. We know that the
analysis of a program can consist of many steps. That
easily requires more memory area than we have available, so
we can eliminate this possibility. The parser has noted the
possible future for our program which limits this future
step by step until only the end symbol is possible. The
parser also has the option of determining which Ada
words should be anticipated in the future. Another
possibility for the parser would be to continue to read our
program until this word has been found. What this means in
our walk through the garden is that we turn over a new card
until we come to a card for which we see a sign. We could
have bad luck with that though and stand at the end with no
cards. The parser in this case would read to the end and
then stop working, which means that the rest of the program

won’t be checked for syntactical accuracy.

There are many possibilities which the Parser can make use
of. I’d like to outline for you at the end of this
chapter the one which appears most promising but which
unfortunately cannot be realized on the C-64 because of the

limited memory. Here now are the possibilities for the Ada

Compiler which I feel present themselves in every case as -

very good options and can manage with little memory space,

Abacus Software ADA Training Course

Let wus suppose that the way through our garden would be
marked out so that a visible trail announced your presence,
and that in our card deck were cards which were marked to be
thrown into the mailboxes along the way. Then I hold the
following way of proceeding to be the most sensible: We go
along until the next intersection and turn up a number of
cards until we reach the card that stands for that
intersection. From that card it is very probable that we
will be able to find the rest of the way to our goal. We
relay this to the parser. First comes the question of "What
are the crossroads/intersections in Ada?". You’ve noticed
how every instruction in Ada is separated with a semicolon.
Therefore what comes closer to a crossroad than a semicolon?
So what is it to forget the semicolon when it only stands as
a "tag" behind our instructions? We suppose then that the
user begins a new instruction on a new line. We take a new
line to be sort of a main intersection. This way of
proceeding will not absolutely guarantee results, but it is
reasonable and promises the greatest results with the

smallest amount of memory allowable.

It is important that we try to make the rest of our program
accessible to a syntactical check. Interpreters, such as the
CBM-64 has, make this task easy because it simply interrupts
the program execution when an error shows up and prints the
meaningless message "Syntax Error”. The compiler must read
over the entire program until it reaches the mistake which

is a time consuming process with several errors.
The Ada parser tries next to find the symbol which it has

been looking for next. It 1looks only wuntil the next

semicolon or a new line,.

- B3 -

Abacus Software ADA Training Course

Here then is the possibility which I belive to be most
promising: If the the parser comes across a symbol which it
didn’t expect, it looks up in the index whether the symbol
has been changed in some way by the user, thereby 1limiting
the future of our program. The index takes up a large place

and doesn’t fit in the memory of the computer.

We know at the end of the syntactical check whether our
program compiles with the rules of Ada grammar. This test
is a prerequisite for the semantic test, which also locates
the last discrepancies.

In English we know that the sentence "The ducks trills." is

grammatically correct, but does it also make sense?

- B4 ~

Abacus Software ADA Training Course

17. Watching the parser do its work

We have selected the following small program as an example:

00010 procedure A is

00020 begin

00030 null;

00040 end A;
It is obvious that no one would write such a program. If we
follow the path of the parser through the grammar we will
see that it is already long enough to give us an idea about
the syntactical analysis of larger programs.
In this section we will learn a way to analyze a program
filled with syntactical errors. The parser is orientated to
the grammar and the index, both of which you will find in
this manual.
How do we get to know these tools? For that we will run
through a small example program. At the end you will surely
agree that this is a place in data processing where one
needs many words to describe simple facts.

Every program must fulfill Rule 001 of the grammar:

001 compilation ::= compilation_1 E_O_F

- B -~

Abacus Software ADA Training Course

This means that after the application of the rule
"compilation_l" you can come to the end of the program. The
characters E_O_F stand for the end. These characters lie

in the future of our trip through the grammar and as a \-i
result do not concern us at the moment. Now we mustn't
forget them because we will still need them, so we take note

of these characters.

"How does the Parser do this?" will be your next question.
The parser notes information about the future of a program

in a "memory stack"”, also just referred to as a "stack".

How does one explain a "stack"? My suggestion is the
following: Let us imagine a skyscraper with 2000 stories.
This is the capacity of the stack in the Ada Parser. In
this skyscraper we find an elevator with only two buttons in
the car. Button 1 goes up a floor and button 2 goes down a
floor. We can deposit information on every floor but we ‘w
can’'t go from the 998th floor to the 700th floor and look at
the information on them. We can only go one floor up or
down at a time. At first we go into the skyscraper and
naturally find ourselves on "Floor 0". And if we go down a
floor we negate all of the information on the last floor. We
will see that this "construction” is sufficient to point out
our way through the grammar. Now E_O_F lies in the future.
Therefore we discard the information from "Floor 0" and go

up a floor.

We find ourselves now on the second floor and must use rule
002 ("compilation_1").

002 compilation_1 ::= context_clause compilation_unit -

compilation_1

85

Abacus Software ADA Training Course

003 I A

Here we have two possibilities:

1) We choose 003, but this means that in our
program the ending characters E_O_F stand

beginning to end, which is not the case;

2) We use rule 002, which means that we must put
away the information of the future.
"Compilation_1" put aside, and up another floor.
"Compilation_unit" put aside and up another floor.

Now we can use "context_clause”.

006 context_clause ::= "with" identifier

007 v L
-

With these rules we again have two possibilities:

1) Use of 006 : 006 begins with with. This is an

Ada word and our program must begin with with;

2) If our program doesn’t begin with with, we
choose possibility 007. An "L" always means that
this rule is blank. We must then turn to the next
rule that 1lies in the future of the progranm.
Therefore we go another floor down, and read the
information. We read "compilation_unit”. Now we

must choose this rule:

-.87_

Abacus Software ADA Training Course

004 compilation_unit ::= "procedure” identifier formal_part

subprogram_spe

005 i "package” package_se

Our program can begin with the Ada words procedure or

package. If it begins with procedure then we choose
rule 004. We cannot forget to start our program with
procedure because it is already tested. I'11 abandon the

"elevator" and confine myself to telling you which rules

will be chosen by the parser.

Production : 060
063
019
015
Move to line 00020
043
Move to line 00030
153
157
158
Move to line 00040
155
039
018
060
063
003

End of the syntactical check.

_88-

Abacus Software ADA Training Course

17.1. Error handling:

If the parser finds a mistake, the possibility exists for
us to print the stack. The parser goes down with us from the
floor where it now is and prints the respective information.
It shows the number of the floor and a number which stands
for the stored rules. These numbers correspond to the
numbers which stand before the names of the rules in the
index. For example, 010 block_statement. Here the number 10
is shown. The Ada words are coded in the memory. They are
preceded by the number 255 80 that the parser can
distinguish them from the rules. The list of keywords is

found at the end of this chapter.

Further in the stack is information which directs the parser
to carry out certain work. Your program should not only
have been checked for syntactical accuracy but also later be
converted into a machine language program. So that the
semantic analysis and the assembler will be provided with
the necessary information, the grammar is expanded in
characters. If these appear on the stack, the parser knows
that it must supply the information for the following work.

Every one of these characters is preceded by the number 252.

-. 89 -

Abacus Software ADA Training Course

17.2. The list of coded Ada words:

Number Word
97 at
98 do
99 if

100 in
101 is
102 of
103 or
104 abs
105 and
106 end
107 for
108 mod
109 new
110 not
111 out
112 rem
113 use
114 xXor
115 body
116 case
117 else
118 exit
119 goto
120 loop
121 null
122 task
123 then
124 type
125 when
126 with

SO

Abacus Software

127
128
129
130
131
132
133
134
135
136
137
138
139
140
161
162
163
164
165
166
167
168
169
170
171
172
173
174
176
177
178
179
180

81

ADA Training Course

abort
array
begin
delay
raise
elsif
entry
range
while
accept
access
digits 10
others
pragma
record
return
select
declare
generic
limited
package
private
renames
reverse
subtype
constant
function
separate
procedure
terminate
=>

L 34

Abacus

Software

181
182
183
184
185
186
187
188
254

- 9z -

ADA Training Course

PO

/=

=

(=

<<

>>

<>
exception
E_O_F

Abacus Software ADA Training Course

18. The Semantic Analysis

At the conclusion of the syntactical analysis follows the
semantic analysis. The semantic analysis checks whether the
program is correct according to program structure. For
example a program can be syntactically correct making use of
the output routine but missing the assignment of the input
and output packages. It is not, however, semantically
correct. In the semantic analysis all of the tests are now
conducted which could not be done during the syntactical
analysis.

Examples:

You want to direct the output to the printer with set_output
(PRINTER), but typed "PRONTER" instead of "PRINTER".
Syntactically the command is correct because the Parser
looks for an identifier in parentheses. However if the
machine program is produced, the computer must recognize the
device "PRONTER" and know how it should be addressed. There
is no such device and it is clear that the command must be

rejected. The semantic test undertakes this job.

You have in your program forgotten to declare a data object,
or you have incorrectly nested loops or tried out a
possibility for which no machine program can be produced -~
in all of these cases the semantic check can give

information as to their correctness.
One can say in simplified terms: Everything that can only

be formulated with words rather than additional rules is

subject to semantic examination.

- 93 -

Abacus Software ADA Training Course

How does the program do this semantic test?

When the parser checks a program for syntactical accuracy,
it starts on its way with the first rule of grammar. It
follows a path through the grammar, which is characteristic
for the program. The semantic analysis follows this path and

can then carry out the testing.

How does the program for the semantic analysis obtain the
necessary information? The grammar, as it is printed 1in
this book, is expanded with additional symbols. If the
parser comes upon such a symbol, it then has a specific

action to perform.

Example:

It has just processed the rule which means that an
identifier is at the end. Then it comes upon a symbol that
instructs: Pass on this identifier to the semantic test.

It 1is in this way that the semantic analysis obtains your
information.

Closely related to the semantic analysis is the production

of the assembler program. If the semantic check is
successful, we know that a correct machine program can be
produced. Moreover, the program for the semantic analysis

is ready to recall all the information for the production of
the assembler program, For that reason it 1is easy to
produce the assembler program parallel to the semantic

analysis.

- 84 -

Abacus Software ADA Training Course

If you want to do this then you will have to save all of the
necessary information on the disk again. This would mean a
longer compiling time. In this method you would produce an
executable program right after the semantic check by running
an assembler program. This will give you the possibility of
actively engaging in the compiling process. This method
enables you to combine your own assembler programs with Ada
programs or you could change programs produced by the
compiler as you wish. So I have settled on this method. I
find it good if one not only gives instructions to the
compiler "for better or for worse", but also can see his own

ideas realized in the produced machine program.

With modern programming languages the cost for the semantic
analysis is very high, because one wants to inform the user
of all possible errors. In earlier programming languages
this was not always so. The compiler in question compiled
programs which did not work in every case. They had gaps as
it were in the working of the rules. It is possible to use
these gaps and draw from the computer possibilities over
which the language actually doesn’t have control. One
programs with "tricks", fully aware of the risk of failure.
It is only bad luck if the programmer misses a "gap" by
mistake, receives no error message from the compiler and as
a result has no idea where he should look for the error in
the program. Even the "self-proclaimed"” computer experts
couldn’t help him. I know of a mainframe computer with
which the wutilization of such a "gap"” began to execute a
program that quit after awhile and printed the message
"computer defect", although the computer was in perfect

working order.

- 95 -

Abacus Software ADA Training Course

With Ada one is protected from such undesirable surprises.
The semantic analysis together with the production of the
assembler program occupies a great deal memory. The
compiler in the C-64 occupies almost all of the memory space
available. The great memory area results in a reduction in

size of the compiling languages.

- 86 -

Abacus Software ADA Training Course

19. Ada Grammar

Why do I need the grammar?

The grammar of the language gives information about how a
program can be made syntactically correct. It describes the
syntax of all possible Ada programs which can be compiled by
the Ada compiler in this Ada training course. it can give
you very helpful information when the compiler gives you an
error message which you do not immediately wunderstand. It
can also give information about whether a specific command
construction is possible or not. Such grammars exist for
most programming languages, and they represent the single
greatest aid when writing compilers. They describe what
demands the user may make on the compiler. It is a part of
the standard of a programming language. Learn to use the
grammar! This knowledge will be invaluable when learning to
use 8a new programming language. You can recognize the key
points of a language by studying the grammar. You can
recognize what possibilities the language offers you, and
whether it would pay to learn more about the language. The
grammar has the advantage that it yields a great deal of
information in a very brief form. 1 always have the grammar
of the programming language I am working with in reach when
programming. For programming languages with a relatively
small scope, such as BASIC, you can keep the grammatical
rules in your head, but you should learn the possibilities
and capabilities which programming languages 1like Ada,
FORTRAN, or COBOL offer.

- 97 -

Abacus Software ADA Training Course

Information on use of the grammar can be found in the
sections "14. The compiler operation -- 16. The syntactic
analysis." There you will find an example of the path you

might take through the grammar when you analyze a program.

The individual rules of the grammar are numbered and you can

find them quite quickly with the help of the index.

88

Abacus Software

001
ooz

003
004

005
006

007
008
008
010
011
o012
013
014
015

016
017
018

018
020

021
oee

19.1.

compilation

compilotion_1

compilation_unit

»

context_clause::=

context_@2 =

with_1

use_1

subprogram_spe

subprogrom_spe_1

formol _part

parameter_spe_1 ::=

parameter_specifico

ADA Training Course

The rules of the grammar:

::= compilotion_1 E_O_F

;= context_clause compilotion_unit

compilation_1
i L

:= "procedure” identifier format_port

subprogram_spe
i "pockage” pockage_se
with” identifier with_1 7;” context_2

context_claouse

i L
"use” identifier use_1 ”;” context_2
i L
= " ." identifier with_1
i L
c:= 7 7 jdentifier use_1l
i L

! "is” declarative_part "begin”
sequence_of _stotements package_'

», n

"end” subprogram_spe_1 ;

::= identifier

i L

::= "[” parometer_specificotion

parameter_spe_1 ”J”

i L

7. " poaraometer_specificotion
porameter_spe_1

L

tion ::= identifier_list ”:;” maode

type_mark expre_l

- 899 -

Abacus Software ADA Training Course

0e3
o4
oes
026
027
oe8
029
030

031

03e
033
034
035
036
037
038

039
o040
041
o42
043
o144

045

046

o417

o48

o49

mode = "in” mode_1
i Yout”
i L
mode_1 ;= "out”
i L
expre_1 := ".:=" expression
i L
package_se ::= identifier "is” declarative_part
pockoge_1 ”"end” paockage_2 ”;”
i "body” identifier "is” decloraotive_part
pockage_3 ”end” pockaoge_2 ";”
pockaoge_1 ::= "privaote” declaraotive_part
i L
pockoge_2 ::= identifier
i L
pockoge_3 ::= "begin” sequence_of_statements packoge_4
D
packoge_4 ::= "exception” exception_handler
exception_1
i L
exception_1 ;::= exception_handler exception_l1
1L
declarative_part ::= declarative_1l declarative_part
L
declarative_1 ::= "procedure” identifier formaol_part
subprogram_spe
i ”"packaoge” package_se
i "use” identifier use_l1 ”;”
i "type” identifier "is”
type_definition ”;”
i "subtype” identifier “is”
subtype_indicaotion ”;”
i identifier_list ”:” switch_decl_1

- 100 -

Abacus Sof tware Al0A Training Course

050 switch_decl_1 ::= "exception” ”;”

051 ! "constont” switch_decl_g2

0se ! subtype_indicotion expre_1 ”;”
053 ! array_type_definition expre_1
0S4 switch_decl_2 ::= subtype_indicaotion expre_1 ”;”
0SS ' array_type_definition expre_1 ”;”
056 | ":=" yniversaol_static_expression ”;”
057 identifier_list ::= identifier identifier_1_1

0S8 identifier_1_1 ::= . ” identifier identifier_1_1
0sS i L

060 identifier ::= letter ident_1

061 ident_1 ;= »_" letter_or_digit ident_1
o2 i letter_or_digit ident_1

063 { L

064 letter_or_digit ::= letter

0BS i digit

066 chaoracter_literol ::= ”’'” graphic_choracter ”’”

067 string_literal = """ gtring_1 """

068 string_1 ::= graphic_charocter string_1

069 it L

070 graphic_character ::= letter

071 i digit

g7e i space

073 ! special_character

074 type_definition ::= ”(” enumeration_literal type_d_.1 1"

07% !\ range_constraint,

076 { 7digits 10” range_constraint

077 ! orroy_type_definition

o078 i "new” subtype_indication

079 type_d_1 ::= ” 7 gnumeration_literal type_d_1
080 i L

081 subtype_indication ::= type_mark constraoint

082 type_mark ::= identifier

- 101 -

Abacus Softwars

083
oB4
08s
086
087
oBB
083
030

091
0os2
083
094

0395
0s6
097
o398
0ss
100
101
10e
103
104

106
107
108
109
110
111
112

constraint

range_constraint

ADA Training Course

:= range_constraint

| index_constraint
! L

::= “range” range

range ::= simple_expression "..” simple_expressian

enumeration_literal

::= identifier

i character_literal

array_type_definition ::= "array” index_constraoint “of”

index_constraint

index_c_1

exception_handler

exception_h_1

exception_choice

name

name_1

name_¢2

name_3

name_4

expression

expre_2

camponent_subtype_indication

:= "[” range index_c_1 *1J”

::= . " range index_c_1

I L
:= "when” exception_choice
exception_h_1 "=>"

sequence_of _statements

:= ”|” gxception_choice exception_h_1

! L

::= sxception_identifier

i "other”

::= identifier name_1

! character_literal

::= " jdentifier

i ”[” simple_expression name_2
i L

::= "..” simple_expression ”J)”

! name_3 name_4 *J”
relational _operator simple_expression
i L

1= 7,7 expression name_Y4

i L

:= relation expre_2

::= logical_opperator relation expre_e2

i L

- 102 -

Abacus Scoftwarse ADA Training Coursse

113 relaotion ::= simple_expression rel_1
114 rel_1 ::= relational _operator simple_expression
115 i L

116 simple_expression ::= simp_1 term simp_2

117 simp_1 ::= unary_operator

118 ! L

1139 simp_2 ::= adding_operator term simp_Z2
120 ' L

121 term ::= Foctor term_2

122 term_2 ::= multiplying_operator foctor term_2
123 i L

124 factor ::= primary fac_2

125 foc_2 :im MY primary

126 1L

127 primory ::= numeric_literal

128 ! string_literal

129 } name prim_1

130 ! "C” expression ”1”

131 prim_1 ::= "[” expression ”1”

132 'L

133 logicol operotor ::= "and”

134 i "or”

135 ! ”xor”

136 relational _operator ::= ”="

137 =

138 L 44

139 IR S

140 S

141 D B

142 odding_operator ::= "+7

143 o=

144 P re”

145 unary_operator o U4

- 103 -

Abacus Software

146
147
148
149
150
151
152
153
154
155
156
157
158
158
160
161
162
163
164
165
166
167
168
168
170
171
172
173
174
175

176

multiplying_operator

sequence_of _statements
seq_1 re= 1
i L
label_1 R
I L

statement sa= 7

ADA Training Course

»

not”

o NP

A A

i ”mod”
! "ram”

::= label_1 statement seq_1

abel_1 staotement seq_1

<<” identifier ">>” label_1l

null” u;n

! state_1

Po»

LIS ¥

exit” exit_1 exit_2 ";”

i\ "return” return_1 H

goto” identifier ”;”

raise” roise_1 ”;

f_staotement

i case_stotement

i block_statement

state_1l HES S

Y
state_c L

if_statement =7

sequence_of _statements if_1 if_2

”»

if_1 HEE

1 »

! actual_parameter_part ”;

dentifier name_1 staote_Z

! character_literal state_3

oop_statement

»,»

;=" expression ”;

loop_statement

i actual_paoraometer_part 7;”

state_3 ri= Y

=" expression ”;

if” candition "then”
end” Vif” " "

else if” condition "then”

- 104 -

-

Abocus Softwore ADA Training Course

177
178
178
180
181

182

183
184
185
186
187
188

189
130
191
192
193
184
1395
186
197

198
199
200
201
202
203

sequence_of _statements if_1

i L
if_2 ::= "else” sequence_of_stotements
! L
condition ::= bpolean_expression
case_statement ::= “cagse” expression “is”
case_statement_clternative case_l
"end” “case” ”;”
case_statement_alternotive ::= “when” choice case_2 "=>"”

sequence_of _statements

case_1 ::= caose_statement_clternative case_1l
! L
case_2 ::= """ choice case_2
i L
loop_staotement ::= loop_2 bosic_loop loop_3 ”;”
basic_loop ::= “lpop” sequence_of _statements
end” ”loop”
iteration_rule ::= "while” condition
{ "for” identifier "in” loop_4t range
logop_2 ::= iteration_rule
i L
loop_3 ::= jdentifier
i L
loop_Y4 ::= "reverses”
i L
block_statement: :=block_1 “begin” sequence_of _statements

package_4 “end” H

block_1 ::= “declare” declarative_l declarative_part
S

exit_1 ::= identifier
N

exit_g2 ::= "when” condition
! L

- 105 -

Abacus Software ADA Troining Coursea

204 return_1 ::= expression
205 i L
206 actual_paragmeter_part ::= "[” identifier ”=>”

actual_paraometer actual_1 ”1”

207 i L

208 actual_1l ::= ”,” para_1l actual_1
209 VL

210 para_l ::= identifier ”=>" actual_parometer
211 i L

212 octual_parameter ::= name actu_1l

213 octua_l ::= "[” name "1”

214 i L

215 roise_1 ::= jidentifier

216 'L

217 choice ::= simple_expression
218 i "others”

219 numeric_literal ::= integer num_1 num_2
220 num_1 = ", integer

221 1L

2e2e num_2 : = exponent

223 i L

224 integer c:= digit int_1

2as5 int_1 ::= "_" digit int_1

2c6 ! digit int_1

227 HE

228 exponent ::= "E” exponent_1

229 exponent_1 ::= "+” integer

230 i ”=” integer

231 ! integer

- 106 -

Abocus Software

18.2..

ADA Training Course

Index to the grammar:

The index is constructed as follows:

The number of the rule is the first thing on the
gppears
onalysis.

ofter

in

if you

Then follows

the grommar.

output the stock during the
the name of the rule.
this gives the number with which the rule

The numbers after the slash

lime. This
syntactical
The number
defined

the

is

indicate

grommaticol rules in which the given rule is used.

001
oo2
003
oo4
00S
o]0/}
ooz
ooB
oog
glo
011
ole
013
014
01S
016
017
018
019
020

actua_l 213 /
actual_l 208 /
actual _parameter 2le /
octual _parameter_part 206 /
odding_operator 142 /
arroy_type_definition 0380 /
basic_laoop 188 /
block_1 188 /
block_statement 197 /
case_1 183

case_2 185

case_stotement 181 /
case_stotement _olternative
charocter_literaol 066 7/
choice 217 /
compilotion_1 ooz /
compilotion_unit oo4 /
condition 180 /

- 107

212
206, 208
206,210
172,174
119

53,55,57

165

182 / 181,183
89,100, 168
182,185

1,2

2
175,176, 189, 202

Abacus Softwars

o021
o2a
023
o24
0es
026
027
oe8
023
030
031
032
033
034
035
036
037
038
038
040

041
a4e
043
044
045
046
047
048
048

0S50

constraint
context_2

context_clause

declarative_1
declarative_part

digit

enumeration_literal

exception_1
exception_choice
exception_h_1
exception_handler
exit_1

exit_2

exponent
exponent_1
expre_1l

expre_2

expressian

fac_2
factor

formal _part

ident_1

identifier

identifier_1_1

ADA Training Course

o44 / 42,198
o4z / 15,30,31,32,42,198
/ BS,71,224, 225,286

08B / 74,79
040 / 38,40
097 / 94,95
095 / 94,95
094 / 38,40
200 / 1B0
202 / 160
2es / 222
229 / 228
o028 / 22,52,53,54,55
111 / 110,111
110 / 28,56,108,130,131,170,173, 180,
181, 204
125 / 124
124 / 121,122
01B / 4,44

061 / EO,B1,62
/ 4,6,8,10,12,16,30,31, 3%, 44,46, 47,
48,57,58,82,688,97,99, 101, 156, 162,
167,190,193, 200, 206,210,215
0SB / 57,58

- 108 -

Abacus Sof tuare

0s1
0Se
053
0S4
0SS
0S6
057
0s8
0sg
080
061
o6e
063
oB4
065
066
067
oG8
068
070
071
072
073
o074
07S
076
077
078
079
080
0B1
ose
083

identifier_list
if_1

if_2

if statement
index_c._1
index_constraint
int_1

integer

integer_rule

label_1

letter
letter_or_digit
logical_pperator
loop_2

loop_3

loop_4

loop_statement

mode
mode_1

multiplying_operator

name
name_1
name_2
name_3
name_‘4
num_1

num_2

numeric_literal

package._1

- 103

ADA Training Course

22,49

175,176

17S

164

91,92

B4, 90

224, 2285, 226

213, 220, 229,230, 231
191

153, 154, 156
60,64, 70
61,62

111

187

187

190

169,171

129,212,213
939, 167

102

105

105,108

219

219

127

Abacus Software ADA Training Courss

0B84 package_2 034 / 30,31

085S package_3 036 /7 31

0B6 package_4 038 / 15,36,197

087 package_se 030 / 5,45

088 para_l 210 / 208

089 parameter_spe_1 020 / 18,20

080 parameter_specification 022 / 18,20

091 prim_1 131 / 128

082 primary 127 /7 124,125

0893 -7 ———————

0S4 range oB7 /7 86,91,82,180

085 range_constraint 0B / 75,76,83

086 raise_1 215 /7 163

097 rel_1 114 / 113

098 relation 113 / 110,111

08S relational_operator 136 / 106,114

100 return_1 204 / 1B1

101 ———— =TT e

102 seq_1 154 / 153,154

103 sequence_of _statements 153 / 15,36,84,175,176,178,182,
188,197

104 simp_1 117 /7 116

105 simp_2 1189 /7 116,118

106 simple_expression 116 7 B7,102,104,106,113,114,217

107 space / 72

108 special_character / 73

109 state_1l 167 / 158

110 state_2 170 / 167

111 state_3 173 /7 168

112 statement 158 7/ 153,154

113 string_1 06B / 67,68

114 string_literal 067 / 128

115 subprogram_spe 014 / 4,44

- 110 -

Abacus Softwars ADA Training Course

116 subprograom_spe_1 016 /7 15

117 subtype_indication 081 / 48,52,54,78,30

118 switch_decl_1 050 / 43

119 switch_decl_2 054 / 51

180 - ===
121 term 121 /7 116,118

122 term_2 122 / 121,122

123 type_d_1 079 7/ 74,73

124 type_definition 074 / 47

125 type_mark oBz2 / 22,81

16 -
127 unary_operctor 145 /7 117

128 use_1 012 / B,12,46

1289 ———————— e e e
130 with_1 010 / 6,10

131

- 111 -

Abacus Software ADA Training Course

{This page left blank intentionally}

- 1lie -

Abacus Software ADA Training Course

20. The Assembler

The assembler 1is required when one wishes to convert
essembly language programs into machine language programs. I
would not 1like to delve any deeper into programming the
microprocessor in machine 1language; you can find that
information in numerous other places. What I would like to
do is to acquaint you with the characteristics of this

assembler.

What does an assembly language program consist of?

1) Instructions which will be translated into machine code

by the assembler.

2) Instructions which provide the assembler with information
about the program and so control the assembly. These
instructions are also called pseudo-instructions or pseduo-
operations (pseudo-ops) because they do not correspond to
machine language instructions as do regular assembly
instructions and do not appear in the machine code. The
disassembler cannot reproduce these instructions in its
conversion from machine code into assembly language

mnemonics. This is possible for instructions of type 1).

I would 1like to make a few comments about the notation of

assembly language programs:

Assembly language programs can be written and stored like
BASIC programs. This allows you to view and analyze the
assembly language programs which the Ada compiler produces.

This 1is perhaps the greatest aid to you. I 1left this

- 113 -

Abacus Software ADA Training Course

interface to the Ada compiler open, even though there are
faster ways of compiling an Ada program. This allows you to
see how the compiler goes about analyzing an Ada program,

and exactly what the results of this analysis are.

Comments in an assembly language program begin with a

semicolon. A semicolon tells the assembler to ignore the
rest of the line. Comments may begin at any point on the
line.
Example:

10 ; This is a comment which

20 ; stretches over several

30 ; lines.

40 LDA 12 ; load acc with contents

50 ; of memory location 12
Spaces function as separators. They separate the basic

elements of assembly language programs from each other on
the line. An instruction ends with the end of the line. Only

one assembler instruction is possible per line.

- 114 -

Abacus Software ADA Training Course

20.1 Operands

Operands can be decimal numbers, hexadecimal numbers, and
symbols (labels, names) of arbitrary length. Symbols must

begin with a letter.

Examples:
Decimal numbers: 15
1000
Hexadecimal numbers:
$FFFF
$0D
$1234
Symbols:
OTTO
JUMPDESTINATION1

TEXT-OUTPUT

Concerning type 1) commands:

The mnemonic abbreviation of commands corresponds to the MOS
standard. The notation for the various addressing modes is

explained below.

The shift and rotate commands which involve the accumulator:
ASL ACCU
LSR ACCU

ROL ACCU
ROR ACCU

- 115 -

Abacus Software ADA Training Course

One-byte commands such as BRK as written as usual.

Direct addressing:

Command construction: First comes the mnemonic abbreviation,

then a space, a number sign (#), a space if desired, and

finally the operand.
Examples of direct addressing:

LDA # OTTO
AND #OTTO
ADC # 13
ADC #13

CMP # $12FF

Zero-page and absolute addressing without index:

Command construction: The mnemonic abbreviation, at least

one space, operand.

Either zero-page or absolute addressing is chosen based on
the size of the operand. 1If the operand is symbol which has
not been defined up to the current point in the assembly
language 1listing, absolute addressing is chosen. This is
done because the assembler reads the source code only once

in order to save time.

- 116 -

Abacus Software ADA Training Course

Examples:
ORA OTTO
STA 234
LDA $FE
STX 12345

Zero-page and absolute addressing with index:

Command construction: Mnemonic, space, operand, comma, and

"X" for the X index-register or a "Y” for the index register
Y.

Examples:
STX OTTO,Y
STY OTTO,X
STA $44,X
LDA 123,X

Indexed indirect addressing:

Command construction: mnemonic, as many spaces as desired
{but at least one), open parenthesis, arbitrary number of
spaces, operand, arbitrary number of spaces, comma,

arbitrary number of spaces, an "X", close parenthesis.
Examples:

LDA (OTTO ,X}
STA ($AA, X)

- 117 -

Abacus Software ADA Treaining Course

Indirect indexed addressing:

Command construction: mnemonic, at least one space, open
parenthesis, space(s), operand, space(s), closing -’

parenthesis, space(s), comma, space(s), the character "Y",

Examples:
LDA (OTTO),Y
STA (123) , Y

Indirect absolute addressing:

This type of addressing can be used only with the JMP
command.

Example:
JMP (12345) -

Relative addressing:

This method of addressing is used for the-relative jumps.
Command construction: mnemonic, at least one space, operand.
The operand must in this case be a label marking a jump
destination. You will 1learn in the next section how this

works.
Examples:

BCC LABEL-1
BPL OUTPUT

- 118 -

Abacus Software ADA Training Course

20.2 Pseudo-instructions

The pseudo-ops control the assembler and have only an
indirect effect on the corresponding machine 1language
program. Pseudo-ops are denoted by a preceding period. There
are also abbreviations for most of the pseudo-ops in order
to allow you to write as short an assembly source file as

possible.

Take a look at the assembly language programs the compiler
creates. This alone should clarify many questions which you
might have and you have a collection of examples which you
can refer to and expand at any time. Once you have practice
in programming in Ada and assembly language, and are
familiar with how the compiler works, you can try to
optimize the assembly source code. This Ada compiler makes

no attempt at optimization.
The instruction: . . START
(.START) sets the address at which your machine language
program will begin. The operand following determines the
start address.
Example:
.START 2047
The instruction: .END
(.END) tells the assembler that the assembly language

program is now done. No example is required.

- 118 =~

Abacus Software ADA Training Course

The instruction: .LABEL or .L

With this instruction you <can define symbols as jump
destinations. The symbol is assigned the address of the
mremory location at which the next machine language command
will be placed. If you like, you can also you use this
symbol to provide the accumulator with the contents of this

memory location, for instance.

Examples:
Label-1 .LABEL
Label-1 .L

The instruction: .EQU or .E

This instruction permits values to be assigned to symbols.
In the assembly, the symbol will be replaced by its value. A

symbol may be assigned a value only once with .EQU.

Examples:
CHARLOTTE .EQU $FEFE
HANS .EQU 123
JOHN .E MONICA
The instruction: .VAREQU or .V

This instruction is used in order to change the value of a

symbol.

- 120 -

-

Abacus Software ADA Training Course

Examples:
JOHN .VAREQU CHARLOTTE
JOHN .V SUSANNE
The instruction: .BLOCK or .BL

You need this instruction to reserve space for data in an
assembly language program. The operand behind the
instruction gives the number of memory locations (bytes) to

be reserved.

Examples:

.BLOCK 555

.BL HANS
The instruction: . TEXT or .T
If you want to save character strings, you would use this
command. The character string is saved at the location at
which the instruction occurs. The string is enclosed in
quotation marks. The first quotation mark is not saved,
although the last is. A character with value zero is also

added. This command is most often used to later output the
character string. To do this we need only the address at
which the text can be found, pass this to a ROM routine, and
Jjump to this routine in order to output the text. See also
the examples for the command .COUNT.

Examples:

.TEXT "Hello, I’'m here."”
.T "That’s just great."

- 121 -

Abacus Software ADA Training Course

The instruction: .BYTE or .B

This command places the value of the operand into the next
memory location and reserves it. The value of the operand

must correspondingly lie between 0 and 255.

Examples:

.BYTE 66

.B CARLA
The instruction: .DBYTE or .DB

The value of the 16-bit operand is broken into two 8-bit
quantities. Then the most-significant of the two is placed
into memory, followed by the least-significant byte. These

memory locations are also reserved.
Examples:
.DBYTE 256
.DB 254

The first command places the values 255 and 1 in memory.

The second command places the values 254 and 0 in memory.

The instruction: .WORD or .W

This instruction corresponds to the .DBYTE instruction, but
it stores first the least-significant byte and then the

most-significant.

- 122 -

Abacus Software ADA Training Course

The instruction: .COUNT or .C
If the assembler encounters this command, the following
happens: When the assembler is started, it places the

symbols CL and CH in its symbol table. .COUNT assigns values
to these symbols. The address at which the next data will be
Placed is divided into two 8-bit pieces. CL is assigned the
least-significant byte and CH the most-significant. If CL or
CL appears in the next instructions, these values are

substituted. .COUNT actualizes these values.

Exanmple:

Output the sentence "John is a bad boy!"

JMP TEXT-1 ; Jjump over the
; sentence
.COUNT
.TEXT "John is a bad boy!'"
TEXT-1 .LABEL 7 Jjump

; destination
.LDY # CL ; load the pntrs
.LDA # CH ; for the jump

; to the ROM

; routine
JSR ; Jump to ROM
LDA # 13 s load CR

; character
JSR ; Jjump to the

; kermal output

; routine

I hope that you have fun programming in assembly language!

- 123 -

Abacus Software ADA Training Course

(this page left blank intentionally)

- 124 -

Abacus Software ADA Training Course

21. The Disassembler:

The disassembler is required when you want to analyze
machine language programs. With the help of the assembler
you can write machine language programs which you can either

run separately or use in a BASIC or Ada program.

A disassembler converts machine code back into the assembly
language mnemonics which produced it (or more exactly, to
the mnemonics to which the codes correspond). It is not
within the scope of this book to discuss programming 65XX
family microprocessors. There are a number of good books
available on this topic. I would like to recommend the book
by Lothar Englisch The Machine Language Book for the
Commodore 64. Englisch has a very good programming style.
Also worthy of recommendation are the "classics" by Rodney
Zaks and Lance A. Leventhal. These two concern only the 6502
microprocessor in general and are neither limited to nor do
they give specific information about the Commodore 64. The
Programming Manual for the R6500 family from Rockwell
International is also good.

The disassembler is stored as a compressed BASIC program on
the disk. This has the advantage that you can move the
disassembler around in memory as desired. This is not
possible with a compiled program. This makes up for the
decreased speed in my opinion. If you have a machine
language program at locations 2047 to 10000, for example,
you can load the disassembler at location 10002. To do this,

enter the following lines in command mode:

- 125 -

Abacus Software ADA Training Course

POKE 44, INT(10002/256)
POKE 43, 10002 - 256 * PEEK(44)
POKE 10002 - 1 , O

You can then load the disassembler with:
LOAD "DISASSEMBLER",8
If the machine language program lies outside the range 2047

- 12000, you <can omit the first three 1lines of this

procedure.

If you have loaded the disassembler at location other than
normal (other than typing simply LOAD "DISASSEMBLER",8), you
must be sure to return the computer to its original
condition when you are finished. This is done with the

following lines:

POKE 43,1
POKE 44,8

If you want to know how far the program which you have in

memory extends, enter:

PRINT PEEK(45) + PEEK(46) * 256

Load the disassembler and start it with:

RUN

A menu appears from which you can select the various
commands of the disassembler. Let us go through the commands

one by one.

- 126 -

Abacus Software ADA Training Course

M : MENU

By pressing the <M> key the menu reappears. This allows you

to be informed of the commands at your disposal.

F : FREE SPACE

This command tells you how many free memory locations are
left, memory locations whose addresses are higher than the
end address of the disassembler. You can get more space for
machine language programs by reducing the space required by
the disassembler. You must POKE the appropriate values into

memory locations 45 and 46 in order to do this.

D : DECIMAL TO HEX
With this command you can convert a decimal number into its
hexadecimal equivalent. Hexadecimal numbers are often
required when working in machine language, but people still
prefer to work with decimal. This command and the one that
follows are therefore two of my favorite commands.

H : HEXADECIMAL TO DECIMAL
You can convert a hexadecimal number into a decimal number.

A : SET ADDRESSES

Here you can tell the disassembler in which memory range you

would like to work in.

- 127 -

Abacus Software ADA Training Course

F : MOVE POINTER FORWARD

At the start of the program the work pointer points to the
memory location set previously by the preceding command. By
pressing the (F> key you increment the pointer by one and
output the contents of the location to which it points on

the screen.

B : MOVE POINTER BACKWARD

With this command you can decrement the pointer by one and

output the contents of the memory location in question.

P : POKE

By pressing this key you can change the contents of the
memory location to which the work pointer points. You will
be asked for the new contents of the address. Enter this and
press <RETURN>. The contents of the memory location are then

changed and the pointer is incremented by one.

I : INSERT BYTES

You will be asked for the number of bytes to be inserted.
Enter the number and press <(RETURN>. Within the selected
memory range, all the contents of the memory locations at
the current pointer position will be moved upwards in memory
by the number of bytes to be inserted. The memory locations
s0o freed are filled with the decimal value 234. This is the
op-code for the microprocessor command NOP : NO OPERATION.

- 128 -

Abacus Software ADA Training Course

D : DELETE BYTES

You you must enter the number of bytes to be deleted. This
many bytes will then by deleted at the pointer position. The
rest of the selected memory area is then moved down

correspondingly.

Y : SYS(xxxxx)

With the <Y> key you can execute a machine language program
which starts at the memory location indicated. The address
corresponds to the start address of the previously-chosen

memory range.

D : DISASSEMBLE & PRINT

Now we come to the disassembling. With <D> we can output a
disassembled program to a printer. It appears in hexadecimal
as well as decimal notation. We first decide whether we want
to enter the start and end addresses in hexadecimal or
decimal. If we enter a character other than "Y”, we must
enter the addresses in decimal. We can end the output at any
time by pressing <RETURN>.

F5 : DISASSEMBLE AND PRINT DEC
This command outputs the disassembled program which begins

at the current pointer position on the screen in decimal

form.

- 129 -

Abacus Software ADA Training Course

F7 : DISASSEMBLE AND PRINT HEX

Outputs the disassembled program in hexadecimal form,
otherwise as command F5.

S : SAVE TO DISK
With this command you can save the contents of a memory
range on a diskette.

L : LOAD FROM DISK
With this command you can load the contents of a saved
memory range into the memory of the computer from disk.
Try out all of the disassembler commands. Practice is the
best way to become familiar with anything, and the best way

to be able to work efficiently with the disassembler.

- 130 -

Abacus Software ADA Training Course

22. Compiler error messages:

When you compile a program, you will certainly find that the
compiler has discovered one or more errors in your program.
There 1is no reason to doubt that these errors are valid,

although sometimes one would like to.

Errors which will be discovered in the syntactic analysis.

If the compiler discovers an error during the syntactic
analysis, it interrupts the analysis. It outputs the line in
which it discovered the error. The line can only be output
in the form in which the lexical analysis left it. The line
therefore does not have its original form, but it can still
be easily read. The last character printed on the line is
the one which caused the error. The computer will also tell

you which characters (or keywords) would be possible at the

given place. This does not mean that any of these character
would work in this spot, but that the compiler carried its
analysis one step further. In the next step it was able to
reduce the number of possible characters. The characters

given are intended to be suggestions to the programmer as to

what should go in the line.

The compiler then informs you which character it would have

expected 1in the course of the continuing analysis. This
character must appear in your program. It is also possible,
however, that the compiler has gotten so far off track in

the analysis wup to this point that this message is of no
help. You do have an idea of what the compiler expected and

how it understood the last instruction.

- 131 -

Abacus Software ADA Training Course

The compiler now asks you if you want it to output the
stack. Refer to the section on working with the compiler for
more information about the stack. If you enter a character
other than "Y" followed by the <(RETURN> key, the stack will
not be printed. If you press only the <(RETURN> key, you can
proceed step by step through the stack by pressing any key.

Having done all this, the compiler attempts to continue with
the syntactic analysis. It is possible that one error may
result in the compiler getting off track and printing many
more error messages which are really only indirect results
of the first real error. This is a fault of all compilers,
however. You <can 1learn why this is so in the sections

dealing with the compiler.

The most common error message during the semantic analysis
is "This possibility not implemented!" This indicates that
you have chosen a program construction which is
syntactically correct but for which no machine code can be
created. Otherwise you will get information on what you have

done wrong.
Don’t despair! Only through practice can one make any

progress in data processing. Only he who knows all the error

messages of his compiler is really acquainted with it!

- 132 -

Abacus Software ADA Training Course

23. Run—-time Errors:

Run—-time errors are those which occur while the program is

running, not while it is being compiled.

If your program contains a lexical, syntactic, or semantic
error, you get an error message already at compile time. You
can then correct your program according to the error
message. The most concrete error messages are those produced
during the syntactic analysis. The program changes a great
deal in form from step to step during the compilation,

although the logic does not change.

The machine language program created contains only the
necessary information. Anything not absolutely required for
its creation has been lost along the way. It is then very
short and can be executed quickly. The names of your data
objects are of no interest to the machine language program.
It knows only at which memory location it can find the data

object.

If an error occurs during the execution of the program, the
microprocessor stops executing the program and the operating
system outputs an error message. For example, if a floating-
point variable is assigned the value 6E+50 during the course
of a program, the program will be interrupts and the message
"overflow"” will be printed. You generally do not know where
this error occurred and what line to search for the error.
The computer cannot give you this information because it

does not know it anymore.

- 133 -

Abacus Software ADA Training Course

23.1 TRACE

In order to make it easier to find these sorts of errors and
also allow you follow the execution of your program, there
is the possibility to output a "trace"” of your program. The
trace consists of outputting the numbers of the 1lines as
they are executed. This way you always know which line is by
executing at any given time and can so follow the program

course.

The compiler must be told from the start that a program is
to be created which will leave a trace. The editor will ask
you when you tell it to compile a program if you want have a
trace or not. If so, type a "Y" and then press <(RETURN>. If
you press <RETURN> without typing anything, you will get a
program without a trace. You can output the trace to a

printer with the set_output command.

A program with trace is somewhat longer than without because
the information about the line numbers must be present in
the machine language program. The assembly time is also

correspondingly longer.
With the help of the trace and additional output with the

put command, you can narrow down the possible locations for

an error.

— 1 3Li —

Abacus Software ADA Training Course

24. List of Ada Keywords:

This 1list contains all Ada keywords, including those which

are not supported in our Ada training course. The lexical
analysis,
that we

program’s

however, recognizes all valid Ada

keywords, so

cannot use one which might interfere with the

successful compilation on a more comprehensive

compiler. This is done to improve the portability of the
programs created with this compiler.
The keywords are protected or "reserved.”" This means that

they cannot be used as names by the programmer.

abort accept access all

and array at begin
body case constant declare
delay delta digits do

else elsif end entry
exception exit for function
deneric goto if in

is limited loop mod

new not null of

or others out package
pragma private procedure raise
range record rem renames
return reverse select separate
subtype task terminate then
type use when while
with xor

135 -

Abacus Software ADA Troining Course

{This paoge left blank intentionallyl

- 136 -

Abacus Software ADA Training Course

25. Problem Solutions:

These solutions are intended to help you if you find that
you are not able to formulate a working solution to the
practice problems posed at various points in this book. Look
through the listings and study my suggestions. These are not
intended to represent the best solutions to the problems but
they are reasonably efficient and do solve the problems. I
have included plenty of comments to help you follow the

program flow.

As 1 said, there are theoretically many possible ways to
write a program which yield the same result, an I am
convinced that you will find a number of elegant

possibilities.

The suggested program solutions are included on the Ada
Training Course diskette. These may be loaded from the
"editor", they must be saved and compiled on a separate data
diskette. DO NOT COMPILE THESE PROGRAMS ON THE MASTER
DISKETTE!!

Also included on the master diskette is a DEMO program and

the compiled version of the program, DEMO.OBJ. The DEMO.OBJ
program may be simply loaded and RUN.

- 137 -

Abacus Software ADA Training Course

output =2

00010 with TEXT.LIO; use TEXTLIO;

Q0020 with CBM_64 ; use CEM_A4;

Q0040 -~ Example for the input and output of data
Q0OS0 ~— The name and weight of the user
0006 —— will be entered and printed

OOO70 ——

00080 procedure IN_DOUT is

QOO0 —

00100 —-- Declaration of the string variable for
00110 —~— name of the user

Q0120 ——

OO1Z0 NAME : string;

00140 ——

00150 ~— Declaration of the floating-

00160 — point variables for the weight

0a170 ——

00180 WEIGHT : floats

00190 ——

Q0200 begin

Q0210 ——

QOR220 screen,clr;

QO2T0 ——

00240 cset row (5):

Q250 —-—

QO260 put ¢ Flease enter your name:")3
Q0270 ——

00280 cet..row (B); set_col (4):

QU290 ——

QOO0 get (NAME)

00310 ——

new.line; put (0" Your name i1s :")
put (NAME)3

new_line (3);

put ¢ " Flease enter your weight:")j;
[s 80 new_line; sst..col (4); get (WEIGHT)
O0ZI20 newline (2);
0Q400 put_lline (" You weigh :: ")3
00410 put WEIGHT)j

Q420 ~—
00470 end IN_OUT 3

- 138 -

Abacus Software ADA Training Course

value assign

00010 with TEXT..I0; use TEXT..IO;
00020 with CBM.E4 ; use CBM..BY ;

00030 -

00040 -- This Program prints a reciept.

00050 —--

00060 —- It osks for informotion about the transcaotion.
00070 —-- Doto is entered on the keybooard and then
00080 -- sent to the Printer.

00030 --

00100 procedure VALUE.ASSIGN is

00110 —--

00120 -- Decleore the string variables

00130 --

00140 BUY : constant string := “bought on”;

00150 TAX..RATE : constant string := ”"4% sales tax
00160 DISKETTE : string ;

00170 DATE : string;

00180 NUMBERLDISK : string;

00130 NAME : string;

oo200 --

00210 ~-- The Price as flooting-point
00220 -- wvaorigbles.

00230 --

00240 PRICE : floact := O;
00250 STATE..TAX : float := 0.Q4;

00260 —--

00270 begin

00280 —-

002390 screen,.clr;

00300 --

00310 put..line (“Enter the buyer FE I

00320 get T NAME 3J;

00330 --

00340 new..,line; put..line (“Enter the date of the sale
He

00350 get (DATE 1;

00360 --

00370 —- Build the first line.

00380 --

003390 NAME (35..43 1 := BUY [1..9);

00400 NAME [46..54 1 := DATE [1..93; '

00410 --

00420 -- QOutput the First line to the screen.

- 139 -

Abacus Software ADA Training Course

00430 --

oo440 put.line C NAME 13;

00450 new_line ;

00460 -- Build the second line.

ao470 --

og480 put_line ("Number if Diskettes purchased? ”3;
o430 get (NUMBER_DISK 13;

00500 --

00S10 put..line (”Total amount?],
00520 get (PRICE 1J;

Q0530 --

00540 DISKETTE C 1..4% 1 := NUMBER.IISK C 1..4 J;
00550 DISKETTE (6..35 1 := “Diskettes at a Price of
00560 --

00570 put (DISKETTE J; put [PRICE 3J;
005BO new_.line ;

00580 --

00600 —-

00610 -- Build the third line

00620 --

00630 STATE..TAX := PRICE * STATE.TAX;

00640 —-

00650 put (TAX..RATE 3; put [STATE..TAX 1 ;
00660 new..line ;

00670 —--

006B0 —-

006390 -- Cutput to the Printer.

00700 --

00710 set.output (printer 13J;

00720 putline C NAME J;

00730 put (DISKETITE 1; put (PRICE 1J;
00740 new.line ;

00750 put [TAX_.RATE J; put [STATE..TAX J;
00760 new.line ;

00770 —-

00780 set..output ([screen J;

00780 —-

00B0OO end VALUE..ASSIGN

H

- 140 -

Abacus Software ADA Training Course

loops

00010 with TEXTLIO; use TEXT.IO;
DOO2G with CBM_64 ; use CEBMLb54;
QOQZ0 ——

00040 procedure NUMBER_LOOFS is
OOOS0 -~

0Q0&60 ——-declare the number variables

QOO70 ——

OOORO NUMRER : float 2 =g

OO0 HILF : float :

00100 —--—

00110 begin

00120 ——

00130 —— output comments.

00140 ——

00150 screen_clri new.line (5);

Q0a160 put lime ("Output the even numbers :");
00170 ——

00180 —— Setup the first.loop.

Q010 —-

QO200 FIRST : loop

QOZ210 ——

00220 NUMEBER := NUMERER + 1;

OO270 -

00240 —-— The first_loop will quit
QO250 —-— when the NUMBER is greater than 30
Q0260 —_

00270 exit FIRST when NUMBER > 503
OO280 -

~— Dutput the even numbers.

HILLF := NUMRER ¥ 23

put ¢ HILF)i new_line:
end loop FIRST;

—— QOutput the odd numbers.

put __line ("Output the odd nmubers!');

-— Betup the secondloop.
00410 ——

00420 for I in S0..99 loop

00440 HILF 2= float (I Y3 HILF = HILF % 2 3 HILF :=
HILF + 13

00460 -~ Dutput the odd numbers.

QQa7o ——

00480 put ¢ HILF)i newlines;

Q0470 ——

00500 end loop:

00sS10 ——

00520 end NUMEBER_L.OOFS

- 141 -

Abacus Software ADA Training Course

decisi om

00010 with TEXTIO; use TEXTLIO;
00020 with CEM__64 ; use CEM_b4;
OOO3ZT0 ——

Q0040 procedure DECISION is
00050 --

00060 ——

00070 —— define the test variable.
00080 ——

00070 TEST : floaty

Q0100 ——

00110 ——

00120 begin

Q0130 ——

00140 screenclr;

00150 ——

00160 newoline (5)3

Q0170 ~-

00180 put_line ¢ "Output Frinter (1) / Screen (2) 7")j
Q0190 ~—

Q0200 get (TEST)3

00210 ——

Q0220 if TEST=1 then

30 -

00240 —— Dutput te the Printer.
QORS00 _

00260 set_output (printer)j;
QO2T70 put_line ("Block structures are great!");
00280 set_output (screen J)j
0Q290 -

QOZO0 -

00310 else

Q0320 -

QOZ20 -= Dutput to the Screen.

put_line ("Rlock structures are great!');

end if;

00400 end DECISION ;

- 142 -

Abacus Software ADA Training Course
S e e comtrol

00010 with TEXTLIO; use TEXT_I0;
00020 with CEM_L64 ;1 use CEM_ 643

00040 procedure SCREEN_CONTROL is
00050 ~-
QQOA0 begin

QOQ70 —— Clear the screen.

00080 screenclr;

QOO0 —— Set border to grey.2.
00100 ——

00110 set_border (grey.,2);
Q0120 ——

00130 —— Set background to white.
o140 ——

00150 set__bkgnd (white);
Q0160 ——

00170 —— Set the cursor.

00180 —

Q0190 set_row (10)3

Q0200 set_col (20);

00210 ——

00220 —--— Set the character color to black.

setotype (black)g;
- Output "R 10 , C 20 ",
put ("R 10 , C 20 ")i
- Set cursor in upper left hand corner

- of the screen.
cursor_ home;

end SCREEN_CONTROL. 3

- 143 -

Abacus Software ADA Traiping

decl arations

QOO10
QQO20

OOOZ0
Q0040
QOS50
Q0060
00070
QOO80
QOO0
00100
00110
Q0120
QU130
00140
Q0150
O0160
Q0170
00180
OD190
QOO200
00210
Q0220
QO2ZI0
00240
Q0250
00260
Q0270
00280
QO290
QOIO0

with TEXT_.10; use TEXT_IO0j
with CEM__64 ; use CEM_64 ;

procedure DECLARATIONS is

Declare the Inteqger Constant.
WHOLE : constant integer := -1 ;
Declare the floating—-point number.
FLOATF : constant float := 0.Je-6 ;
Declare the String constant.

STR @ constant string := "Hi there!" ;
Declare the Integer variable.

INT_VAR : integer ;

Declare the floating-point variables.
FRICE_CHEESE, FRICE_SAUSAGE : float :=0 j
Declare the string variable.

HOUSENAME : string := "Sasse” ;

End of the Declarations.

begin

nulls

ernd DECLARATIDONS ;

~ 144 -

Course

016t IN ‘spidey Puely) Lig/ X08 'O'd

E "Xe} S9|es 0pd |Jul
En sluapisas uebiyoiy
‘peldsdde ssesdx3 uedudWy pue YSIA
‘preaselsew ‘Ajuo SIBJIOp 'S'N Ul S%08yd
pue laplo Asuop “1apio ad(ubiaioy 00°8%)
00'v$ apnjul bBulpuey pue abejsod 104

0LSS-1Z (949) :INOHI

HIeD JO MM O|qejRAR SO} 10430

G6°6.8 6861 Iudy Ul pue Jajidwod
*Jo}pa sapnjaul abexded "spidiy IIq Inoyim Inq ‘pJepuels
3Iyy B ueybiusay ay) 01 swiojuo) “sapdwo?d abenbue
3 I E— HATIdNOD IABDVAODNVI-D

56°65S ‘apinb afied +Qgz| 'J3(quiassesip
*J21QLUIAsSe 1adwoa/1anIsyd xejuhs "1oupa ‘abenbue
ay) 0 135gns aAisuayaIdwoy “a.niny ay) jo abenbue| ay)
nof sayoes] — ASHNOD ONINIVHL vav

56'6€S G861 |udy "2J0W “jew
-104 ‘peaY ‘UM ‘IIB) ‘3unnoiqng ‘doi§ ‘anunuo?) ‘oq '}
8513 ‘0109 "Jondw| ‘Jeusa)x3 ‘aouaeainbl ‘uoisuawiq ‘eleQg
‘UOWWIO) "/ / URJLIO4 UO PasSEq — Q-NVYHLHOA

96°66$ 'saunng)
JOJUOKY/J9)QWIasSy O} YUll UBD pUB 3p02 aulyoew (iG9
0} S8|dwon ‘asow ‘awabeuew ayy 'sads ‘saydesd
104 SUDISUAIXA UlIM [BISE4 [N} = PO-TVYISVd

G6°6E$ ‘SpUBWILIOD
001 'Su0isualxa Sy 'pie S, Jawwesboid Juawabeuew
uaaJds [|n} ‘walsAs ajy paxapu| ‘sjuedldde snouas ioj
abexoed juawdojaaap euoissajoid — HO-HIALSYIN

66'66$ Hundwoo Ag way) 108101d pue eab ybiy oul
swebosd oA 185 *ap0apaads 19edwoo Jo/pue abenbue;
auiyoew (169 1se) Jayua oul abenbuey 9Syg 8lad
-wod ay; s3idwod — $9-UIATIANOD JiSvE

56'65$ isaleAos Buiked noyum uoISIIA
JWILNNY 9315 3INquiSIp ued no A “abexoed Juawdojaasp
Jadns siyl yum swesboid snoA 0} SpuBWWODd PUNOS

pue awdeib +05 pre — $9-JISVE OIAIA

yoeaa
anoA
SPUIIXdD
snoeqy

-Make P’Olll: ‘64
work fulltime

MAKE YOUR OWN CHARTS...
CHARTPAK.64 SALES. COST, TOTAL [xP & MET PROFIT
produces professional #°% —
quality charts and E 1

graphs instantly from
your data. 8 chart for-
mats. Hardcopy in two
sizes to popular dot
matrix printers. $39.95 > -
ISBN# 0-916439-19-4 _.."[

eTR & et z___eim 3 aTea
JLTH

Aiso Available CHARTPLOT-64 for unsurpassed quality charts on

CHART YOUR OWN STOCKS...

usl:l'“l‘ ted techni |:= Wh~\,n ‘u,ﬂ\

sophisticated technica W, M

anaiyais - charing | i I T
W™

package for the serious HJ'
stock market investor. .\
Capture data from
DJN/RS or Warner ser-
vices or enter and edit
data at keyboard. 7 mov-
ing averages, 3 oscillators, trading bands, least squares, 5 vol
ume indicators, relative charts, much more. Hardcopy in two

plotters. ISBN# 0-916439-20-8 $84.95 sizes, most printers. ISBN# 0-916438-24-0 $84.95
DETAIL YOUR DESIGNS... DO YOUR OWN WORD PROCESSING
CADPAK-64 . jplisll TEXTOMAT-84

superb lightpen design
tool. exact placement of
object using our Accu-
Point positioning. Has
two complete screens.
Draw LINEs, BOXes, .
CIRCLEs, ELLIPSEs; | S e
pattern FiLLing; freehand o Tomuter-aided desisn Systen P
DRAW; COPY sections —— - .

of screen; ZOOM in and do detail work. Hard copy in two sizes
to popular dot matrix printers. ISBN# 0-918439-18-6 $49.95

[CADPAK-
210

flexible worprocessing
package supporting 40 or
80 columns with horizon-
tal scroling. Commands

=
,_
are clearty displayed on o [
[1

JEVNY v ‘ wocx [o Ia
the screen awaiting your

choice. Quickly move from

editing to formatting to J I 1 | [

merging to utiities. Will [===
work with virtually any prin

ter.

» e[=T =T

1SBN# 0-916439-12-7 $39.96

CREATE SPREADSHEETS & GRAPHS...
POWER PLAN-64

Cuordrnate: C/10 PORER PLAN-R4
not only a powerful |7, 2 [} ¢
spreadsheet packages | Sale Jan oy

istridutors

available, but with built in

1
graph!:s 100. The 275 3 Retoilors pER]

N) Aol Drai 3.7
page manual has tutorial 5 whee L2 LR
section ahd HELP screens & .6 1133
are always available. ; Erpomer
Features field protection; | ¢ "y, 5.2
text formatting, windowing: | 10 Détice 28
row and column copy, | ! Bumng 3.0
st dupeato and gt | 1 4 s

It mmeemmemeses e
$49.95 1§ 4.5
1

FREE PEEKS & POKES POSTER WITH SOFTWARE
For name & address of your nearest dealer call (616) 241-5510

ORGANIZE YOUR DATA...
DATAMAT-64

powerful, yet easy-to-
use data management

INVENTORY FILE

ltem Number peucription_

package. Free form Onhand Price

design of screen using - -
up to 50 tields per Location

record. Maximum of Reord. Pt. _ peord. Gtv, ..

2000 records per
diskette. Complete and | Cost —_
flexible reporting. Sort-
ing on multiple fields in any combination. Select records for prin-
ting in desired format. ISBN# 0-916439-16-X $39.95

Other tiles svailable. For FAEE CATALOG and nams of nasresi desier, wrila os cell (818)
241-5510. For postage and handiing. iclude $4.00 ($6 00 fareign) per order Money Order
and checks in U S dollars only Mastercard, VISA and American Express accepled Michigan

residents include 4% sales 1ax —
=™
o

You Can Count On

Abacus i

CANADA: Book Center. Montrsal {314) 332-4154

P.0. Box 7211 Grand Rapids, MI 49510 - Telex 709-101 - Phone 616/241-5510

_ Required Reading for

TRICKS

KTIPS
FOR THE
coMMODO

VR s
Nt

TRICKS & TIPS FOR YOUR C-64
treasure chest ot easy-to-use programming techm-
ques Advanced graphics, easy data input, enhanced
BASIC, CP/M, character sets, transferring data bet-
ween computers, more
I1SBN# 0-916439-03-8

QRAPHICS BOOKX FOR C-64 - from
fundamentals to advanced topics this is most com-
plete reference available. Sprite animation, Hires,
Multicolor, lightpen, IRQ, 3D graphics, projections.
Dozens of samples.

ISBN# 0-918438-05-4 $19.95

SCIENCE & ENGINEERING ON
THE C-64 - starts by discussing vanable types,
computational accuracy, sort algorithms, more.
Topics trom chemustry, physics, biology,

275 pages $19.95

350 pages

Y. any prog .
IS8N# 0-916439-09-7 250 pages $19.95

~ your COMMODORE 64

THE

- ANATOMY

OF THE

COMMODORE

ANATOMY OF 1541 DISK DRIVE -
bestselling handbook available on using the floppy
disk Clearly explains disk files with many examples
and utilities. Includes complete commented 154t
ROM listings

ISBN# 0-916438-01-1 $19.95

ANATOMY OF COMMODORE 64 -
insider’'s guide to the '64 internals Describes
graphics, sound synthesis, 1/0, kernal routines,
more Includes complete commented ROM listings
Fourth printing.

ISBN# 0-916439-003

IDEAS FOR USE ON YOUR C-64 -
Waonder what to do with your '64? Dozens of useful
ideas including complete listings for auto expenses,
electronic calculator, store window advertising,
recipe file, more

ISBN# 0-918438-07-0 $12.95

320 pages

$19.95

300 pages

200 pages

‘ / PEEKS \
& POKES

I FOR THE

COMMODORE

ADVENTURE
GAMEWRITERS

Vit
ol

PEEKS & POKES FOR THE C-84 -
programming quickies that will simply amaze you.
This guide is packed full of techmques for the BASIC
programmer.

ISBN# 0-916438-13-5

180 pages $14.95

ADVANCED MACHINE LANGUAGE
FOR C-84 - covers topics such as video con-
troller, timer and 7eal time clock, serial and parallel

110, ding BASIC . Dozens
of sample listings.
IS8N# 0-916439-06-2 210 pages $14.95

ADVENTURE GAMEWRITER'S
HANDBOOK - is a step-by-step guide to
designing and writing your own adventure games.
Includes listing for an automated adventure game
fenerator.

ISBN# 0-916438-143

200 pages $14.95

Call today for the name of your nearest local dealer Phone:(616) 241-5510

Other titles are available, call or

write for a complete free catalog

You Can Count On

aCUs

For postage and handiing include $4.00 ($6 00 foreign) per order Money order
and checks in U S dollars only Mastercard. VISA and Amerncan Express accepted
Michigan residents include 4% sales tax CANADA: Book Center, Montreal Phone (514) 3324154

Software

FYTIIT
T

P.0. Box 7211 Grand Rapids, MI 48510 - Telex 709-101 - Phone 616/241-5510

=

	ada cover.pdf
	Binder1_Page_1.jpg
	Binder1_Page_2.jpg

