816 BEAT

By Doug Cotton

Reprinted from Commodore World Issue 19
Copyright © 1997 Creative Micro Designs, Inc.

CMD SUPERCPU RAM EXPANSION & TIMING

One of the more anticipated rel eases for the
SuperCPU is just around the corner. I'm
speaking of the SuperRAM card for the
SuperCPU 64, long awaited by many of the
devel opersinvolvedincresting new programs
for SuperCPU-enhanced systems. The card
will allow larger programsor programswith
extensivedatatobefully loadedintomemory
(as opposed to bringing in separate modules
from disk, a process that is both dow and
inconvenient). New programs, written with
the SuperCPU and SuperRAM cardinmind,
can offer more powerful features. But before
wegetintotechnical details, let’ stakeamore
general look at the SuperRAM card itself.

Pictured ontheright side of thispageisthe
prototype SuperRAM card which CMD has
developed for testing. The board contains
only a few components: a clock oscillator,
bus driver, a reprogrammable array logic
device(GAL), adigital delay chip,acomplex
programmable logic device (CPLD), and a
handful of resistorsand capacitors. Thereare
alsotwo connectorsontheback of thecircuit
board (not shown) which attach the
SuperRAM cardtotheSuperCPU mainboard,
and a 72-pin SIMM (Single Inline Memory
Module) socket where the RAM SIMM is
installed.

As with the SuperCPU itself, the
SuperRAM card’ scomplex circuitry ismostly
insidethe CPLD, which contains most of the

SIMM Chart
The chart below indicates the size and
organization of 72-pin SIMMs supported by
the SuperRAM card for the SuperCPU. All
SIMMs must be Fast Page Mode type, 70ns
or faster.

SIMM Capacity Row Size Row/Column Adr.

1 MB (256K x 32/36) 2 KB 919

AMB(IMx32/36) 4KB 10/10
8MB(2Mx32/36) 4KB 11/10
16 MB (4Mx 32/36) 4 KB 12/10
16 MB (4Mx 32/36) 8 KB 11/11

SuperCPU RAM Expansion & Timing

SurerCPU &4
RAM Expansion
Card Prototype

Slated for release in
the next few weeks is
the RAM Expansion
Card for the CMD
SuperCPU 64. This
card can contain from
1 to 16 Megabytes of
RAM (using standard
72-pin SIMMs) that
can be used by future
applications. A GEOS
driver is expected to
ship with the card.

= o
Uig‘-I-O rsunnnnnuunmmu
ooooonoesoonos!
[slslelelol-Tolalstnlotelajatate]
!_UUUBUBDUOUUHUDDU
uuaumngoun‘unuu
00 0L

o00=09,.

ﬂcuun“ﬂnnﬂ
oooaan: 3
ooon

memory mapping, control and refresh
circuitry. While this vastly decreases the
amount of board space required, developing
the logic equations needed to program the
chipfor aspecificfunction often provesto be
very time-consuming.

The SIMM socket can be fitted with 72-
pin memory modul es containing from oneto
16 Megabytesof standard Fast Page DRAM.
It's very important to make sure that the
SIMM used is standard Fast Page; EDO and
other 72-pin SIMM typesarenot compatible,
and will not operate correctly. The memory
must berated at 70 nsor faster (thelower the
number, the faster the speed rating), but bear
in mind that faster RAM doesn’t translate
into faster access (the DRAM controller has
fixed speedsfor performing memory access).

For additional information on compatible
SIMMSs, see the SIMM Chart included with
this article. The chart fully specifies all
SIMMsapprovedfor usewiththe SuperRAM
card.

The General Memory Map

Since the 65816 processor can addressup to
16 Megabytes of RAM, the SuperRAM
memory isunlike previous RAM expanders
(suchastheCommaodore17xx seriesREU’)
inthat programscan actually executedirectly

fromthismemory. It salsoimportanttonote
that programsdon’t haveto use the 65816’ s
native mode to be able to access this extra
RAM, athough there are some advantages
to doing so. The program
SUPERRAMFAKE, whichaccompaniesthis
article, contains a subroutine that shows
how extramemory can be accessed in 6502
emulation via “long” addressing modes.
We'll discussthat more alittle later, but we
shouldfirst look at how the SuperRAM card
fits into the SuperCPU memory scheme.

For a good overview, take a look at the
“SuperCPU 64/128 Common Memory
Map”. The areas in white (Banks $00, $01
and $F8-FF) are the memory found in every
SuperCPU, with or without memory
expansion. Banks $00 and $01 are static
RAM, while $F8-FF are used and reserved
banks for the system ROM. This map is
identical on both the 64 and 128 versions of
the SuperCPU, though the 128 version will
have two additional banks of static RAM
which will be swapped in at Banks $00 and
$01 as needed.

Given the general map, thereisroom for
expansion RAM at Banks $02 through $F7.
To avoid the need to translate addresses on
all expansion RAM, SIMM memory
addressing actually begins at Bank $00,

816 Beat

although any expansion RAM that occupies
thesameaddressareaas StaticRAM (Banks
$00 and $01) or ROM ($F8-FF) isn't
accessible. The SIMM RAM Banks $00 and
$01 have been moved to Banks $F6 and $F7,
and reserved for future systemuse. Thisthen
meansthat any systemwith expansion RAM
(any size) will havethisextraRAM available
for future OS capabilities, but it also means
that thelast Bank avail ablefor user programs
will be Bank $F5 (on a system with 16
M egabytes of expansion RAM installed).

Detecting Expansion RAM
Naturally, one of the more important
guestions on programmer’s mindsis, “How
do | detect RAM expansion, and how do |
know how much thereis?’ Okay, that’stwo
questions, but we' ve got answers for both.

SuperCPU 64/128

Common Memory Map

Banks $F8—FF - ROM
Banks $F6—7 - System RAM

Banks $02—$F5
16 MB Expansion RAM

Banks $02—$7F
8 MB Expansion RAM

Banks $02—$3F
4 MB Expansion RAM

Banks $02—$0F
1 MB Expansion RAM

Bank $01 - PsuedoROM, RAM
Bank $00 - RAM

816 Beat

First, any new SuperCPU sold after the
new SuperRAM card becomesavailablewill
sport anew version of the SuperCPU ROM.
Likewise, al SuperRAM upgrades sold to
userswith older SuperCPUswill include the
new ROM. Thus, thefirst stepindetermining
if RAM expansionispresent will beto check
the ROM version. This is accomplished by
reading four bytes, beginning at $00E487
(64 mode only!). These four bytes contain
theversion number stringin PETASCII. The
version that will provide initial support for
expansion RAM is“1.40". Read these bytes
and compare for this number. If the version
number islower, there’ sno expansion; if it's
the same or higher, there may be expanded
memory, and you'll need to move on to the
next step.

If you found aversion that supports RAM
expansion, read in four bytes beginning at
$00D27C. Thesebytescontainthefollowing
information concerning RAM expansion:

$00D27C First Available Page

$00D27D Bank of First Available Page
$00D27E Last Available Page+1
$00D27F Bank of Last Available Page+1

If there isn't any extra RAM installed, all
four bytes will contain zeroes. The BASIC
program SUPERRAMDETECT providesan
example of checking these parameters and
calculatingtheavailableexpansion memory.
Pleasenotethat thesevariablesareonly vaid
in Bank $00 whilel/O isswitched in; should
you need to check for expansion RAM with
I/Oout, thesevaluesareavailableinthesame
locations of Bank $01.

If your application needs to use some
portion of expansion RAM, it must also
update the memory variables. This requires
switchinginthe SuperCPU H/W registersby
storing any vaue at $00DO7E (decimal
53374). After you have modified the
variables, turn the SuperCPU H/W registers
back off by storing any value to $00D07F
(decimal 53375). Again, /O must beenabled
during any of thesechanges, oryou’ Il needto
change the variables directly in Bank $01.

Itisvery important that you pay attention
to the expansion RAM variables, and that
youdon’'t makeany assumptionswithregard
to RAM availability; some future system
extensionsor user programs may steal some
of theRAM beforeyour applicationisstarted.
As aresult, it would be wise to create your
program code and/or data segments in a
manner that allows them to be relocated.

CMD ispresently working toward standards
andtoolsthat will makewriting and utilizing
relocatable codelesspainful, butit will make
the transition easier if 6502/65816
programmers start getting familiar with the
techniques now.

Toassist youintesting routinesthat detect
RAM expansion, we' veincludedtheprogram
SUPERRAMFAKE with this article. You
may usethisprogramtotrick your SuperCPU
into believing that it has RAM expansion
available, as well as the proper OS version
required to support it.

Speed Considerations

As you may aready know, Dynamic RAM
(DRAM)isn'tasfast asStaticRAM (SRAM),
but it is far less expensive and available in
larger capacities. Thisexplainswhy DRAM
was chosen for expansion memory.

Taking the speedinto consideration, CMD
employed special circuitry into the
SuperRAM card’sDRAM controller to help
the DRAM keep up. Understanding how this
controller ‘thinks' is the key to optimizing
the speed of expansion RAM accessesonthe
SuperCPU.

DRAM, unlike SRAM, must be pre-
charged before valid datacan beread from a
specific address. DRAM also requires
periodic ‘refresh’ in order to maintain its
contents. These are the factors that add time
to accessing the memory. The memory cells
themselves in Dynamic memories are
organizedintoan array of rowsand columns.
On memory modules such as the SIMMs
used by the SuperRAM card, theserows and
columns are combined in away that allows

Expansion RAM Speed
Characteristics at 20 MHz*

Sequential Read within Row?: 1 Cycle
Non-seq. Read within Column?; 1 Cycle
Non-seq. Read, new Column?in Row': 2 Cycles
Read from new Row*: 3.5 Cycles
Write within Row?: 1 Cycle
Write in new Row": 3 Cycles
Read during Refresh®: up to 8.5 Cycles
Write during Refresh®: up to 8 Cycles

'Rows are 2K, 4K or 8K Bytes, depending on the
SIMM (see SIMM Chart).

2Columns are groups of four bytes each on
supported 72-pin SIMMs (see SIMM Chart).
*Refresh occurs approximately every 10
microseconds.

*At 1 MHz all times are 1 cycle (synchronized to
the computer’s Phase 2 clock), refresh is hidden.

Commodore World Issue 19 Reprint

al thebitsinabyteor awordtobeprecharged
and accessed as a group.

If you look at the SIMM Chart in this
article, you'll notice that we included the
number of addressable bits for rows and
columns, as well as the number of bytes
withinaspecificrow. Let’ slook at the1MB
SIMM to understand how this information
describesthe SIMM.

There are 9 bits used to address rows, and
another 9 bits for columns. Since 279=512,
we can deduce that there are 512* 512 array
crosspoints, which gives us 262,144 unique
addresses. Divide that by 1024 (1K), and
you'll get 256... so there are 256K addresses

onthisSIMM. Sinceeach addresshas 32 bits
of data (or 36 on a parity SIMM), there are
4* 256K, or oneM egabyte (1,048,576 Bytes)
of 8- or 9-bit memory locations.

Still with me? Okay, we can also deduce
from the SIMM is that each row contains 2
KB ($800 bytes) of 8- or 9-hit data, since
there are 512 columns of 4 bytes each per
row.

Now let's look a how the SuperRAM
memory controller handles things. Assume
foramoment that you havearoutinesituated
at $020000, the first available expansion
memory location. This location is the first
byte in a row ($020000/$800=%$40 with no

remainder), and also thefirst byte of thefirst
column of that row (always the case at the
start of any new row, though we can do the
math $020000/$04=$8000 with no
remainder). At this location you have the
following code:

020000 A9 03 LDA #$03
020002 8F 00 03 02 STA $020300

Let's assume you jump to this code from
another Bank or row, andit beginsexecuting.
Normally theLDA immediatewouldrequire
2 cycles to complete; 1 cycle to load the
instruction, and 1 cycletofetchtheimmediate

vy SUPERRAMDETECT vy SUPERRAMFAKE (cont.)
112 |5 rem get version 146 | 350 gosub4@Z got 052
243 | 10 v$="" 163 | 369 :
118 | 20 fori =585@Bt 05856 126 | 4 rem input custom val ues
43 3@ : v$=v$+chr $(peek(i)) 213 | 419 :
170 | 490 next 91 420 print"{2 CRSR DN}enter values in hex
136 | 5@ v=val (v$) I":print"note: end address is |ast addre
118 | 69 : ss+1{ CRSR DN} "
160 | 70 i fv<l. 4& hen2d&D 54 430 i nput"starting bank (sb)"; ui $:gosub4
138 | 89 : 6@ sb=ui
32 122 rem get ram size & | ocation 247 | 431 input"starting page (sp)";ui$:gosub4
70 110 sp=peek(53884) remstart page 6@ sp=ui
89 120 sb=peek(53885) remstart bank 171 | 432 input"endi ng bank{3 SPACES}(eb)";ui $
153 | 1390 ep=peek(53886) rem end page : gosub46d eb=ui
144 | 140 eb=peek(53887) : rem end bank 35 433 i nput"endi ng page{3 SPACES}(ep)";ui $
54 142 i f sb+sp=& hen22 : gosub46d ep=ui
203 | 145 : 68 44@ return
174 | 150 x=(eb*256+ep) - (sb*256+sp) 253 | 450 :
218 | 169 : 140 | 460D ui =@
178 | 179 printx*256"bytes avail abl e” 132 | 462 fori=1to0l6
23 180 print" starting at"(sb*256+sp)*256 141 | 464 : ifleft$(ui$, 1)=m d$(h$,i, 1)thenui=
63 190 end ui +((i-1)*16)
25@ | 192 : 59 466 : ifright$(ui$, 1)=m d$(h$,i, 1)t henui
43 22 print"no ram expansi on" =ui +(i-1)
83 219 end 99 473 next
128 | 480 return
38 490
vy SUPERRAMFAKE 194 | 5@ rem store dummy val ues
45 51
271 | 1@ print"{ CLEAR/ HOVE} { CRSR DN} { 14 SPACES 119 | 54 pl =124@289: f ori =1t 04: pv=asc(m d$(v$, i
} super r anf ake" , 1)) :gosub518: pl =pl +1: next
86 20 v$="1. 490 : sp=@ sb=@ ep=@ eb=0 49 5@6 :
144 | 30 h$="@123456789abcdef " 44 5@6 pl =11942& pv=sp: gosub518
148 | 99 : 225 | 507 pl =pl +1: pv=sb: gosub518
20 122 print"{HOVE} {3 CRSR DN}{15 SPACES}1. 222 | 5@8 pl =pl +1: pv=ep: gosub518
{2 SPACES} @ nmb" 11 5@9 pl =pl +1: pv=eb: gosub518
117 |11 print"{15 SPACES}2.{2 SPACES}1 nb" 58 510 :
147 | 12@ print"{15 SPACES} 3. {2 SPACES}4 nb" 211 | 516 sys64738
38 139 print"{15 SPACES}4. {2 SPACES}8 mb" 61 517 :
78 140 print"{15 SPACES}5. 16 nb" 131 | 518 b=int(pl/65536): h=int((pl-(b*65536))
128 | 150 print"{15 SPACES}6. custont /256) : 1 =pl - ((b*65536) +(h*256))
218 | 169 : 67 519 :
187 | 170 getk$: i fk$=""thenl7d 124 | 520 poke49152, 169 : rem | da#
96 180 k=asc(k$+chr$(Q))-48 122 | 521 poke49153,pv : remvalue to store
92 190 i f k<lor k>6t henk$="": got 0179 230 | 522 poke49154,143 : rem sta abs |ong
3 200 36 523 poke49155, | rem | o addr
126 | 210 onkgot 03W2, 319 320, 33Q, 340, 350 168 | 524 poke49156, h rem hi addr
84 30D sp=@ sb=@ ep=& eb=& got 0505 187 | 525 poke49157, b rem bank
174 | 310 sp=@ sh=2: ep=& eb=16: got 0533 230 | 526 poke49158, 96 remrts
110 | 32Q0 sp=@ sh=2: ep=@ eb=64: got 0500 75 527 :
20 330 sp=@ sb=2: ep=@ eb=128: got 05 188 | 528 sys49152
243 | 340 sp=@ sb=2: ep=& eb=246: got 05 162 | 53@ return

SuperCPU RAM Expansion & Timing

816 Beat

byte into the accumulator. But in this caseit
would require 4.5 cycles; 3.5 cyclestofetch
theinstruction from anew row in expansion
RAM, then 1 more cycle to fetch the
immediate byte. The latter took only 1 cycle
because the row and column were already
charged, and the controller knows this. If
you' rewondering how an operation can take
anuneven number of cycles, youneedtotake
alook at the sidebar on Clock Stretching.

Now the next ingtruction, STA, is fetched
in 1 cycle, and the three addressbytes are al
fetched at 1 cyclefor each. When the second
byte of the address (the $03 at $020004) is
fetched, we cross over into a new column.
Normally this would require an extra cycle,
due to column address access timing
requirements; however, thecontroller outputs
the next column address when the processor
reads from $020003 by assuming that the
next accesswill bein thefollowing memory
location. By always‘guessing’ that the next
access will be sequential, the DRAM
controller saves time when this provesto be
the case.

Back totheexample, there’ soneoperation
left to perform: store the accumulator to
memory. This usually takes 1 cycle, but the
location whereitisto bestoredisinadistant
column of the samerow, so it takes 2 cycles.

This set of instructions would normally
take 7 cyclesin SRAM, but in expansion
RAM, it requires 10.5 cycles. This may
seem slow at first, but when contrasted
with a stock 64 running at 1 MHz, we're
still operating over 13 times faster (the
throughput is approximately 13.4 MHz in
thisparticular case). We could also modify
the program so that the store instruction
places the value into Static RAM instead
of Dynamic, say at $003000, and save an
additional cycle. This would kick the
effective speed up to 14.7 MHz.

It'salso important to note that most of our
|ossinthroughput camewhen our codebegan
executinginanew row. Thisdoesn’t happen
often, since rows are at least 2 KB wide.
Consider awhole2 KB segment of contiguous
codeexecutingfromDRAM, withall externa
readsand writesgoingto Static RAM. Under
those circumstances you might achieve a
throughput of over 19.9 MHz—not
considering refresh or occasional jumpsand
branches.

Refresh?Y es, DRAM needstoberefreshed
to maintain its contents, and at these speeds,
it can no longer be ‘hidden’ asit commonly
is at 1 MHz. Refresh occurs once

816 Beat

Clock-Stretching

While many of the operations within the SuperCPU occur at a normal 20 MHz rate, some
operations may take longer than the single cycle in which they should usually occur on
a 1 MHz Commodore computer. Under these circumstances, the high half of the clock
signal is stretched to meet the requirements of the operation. In the example below we
show the System Timing Base (40 MHz) and how the System Clock itself would look
while executing instructions at full speed (Normal Operations). The bottom example
shows what happens during an operation that requires 3.5 20 MHz clock cycles to
complete. The low part of the cycle has a duration of 25 nanoseconds, or half of the
duration of a 20 MHz cycle; the high portion of the cycle is stretched, giving it a duration
of 150 nanoseconds. The total duration of this cycle is 175 nanoseconds, or 3.5 times
the 50 nanosecond period of a standard 20 MHz cycle. You may note that this causes
what may appear to be aphase inversion; that is to say, the clock signalis now low during
a period in which it originally would have been high, and vice-versa. This factor is of no
importance, however, and only becomes an issue when synchronization with the host
computer’s clock becomes necessary. When that occurs, clock stretching is used as

required to bring the SuperCPU clock into phase with the host computer’s clock.

System Timing
Base (40 MHz)

U uuyUL
e

Normal Operations
(20 MHz)

1(7 175 ns ﬁl

Clock-Stretched
Operation

approximately every 10 microseconds (about
200 cycles) and can cause a1 cycle DRAM
memory operation to take up to 8.5 cyclesto
complete. We could see up to 11 refreshes
while executing a2 KB segment of code, so
if takethisinto consideration, our throughput
drops to about 19.2 MHz.

Now if we also consider abranch or jJump
every 20 bytes (that’s actually quite a high
average), we get an overall throughput of
around 18.3 MHz; till a remarkably good
figure. Naturally, your own programs will
vary from this mark, depending on how you
writethem, and how often you perform other
accesses that can cause slowdowns (such as
I/0O access or frequent writes to mirrored
memory).

Other SuperCPU Timing Issues

With the proverbial ‘can of worms now
open, let’s consider the other timing aspects
of the SuperCPU. The SuperCPU Specia
Function Timing Chart will be our guide as
wediscussthevariousfunctions. Please note

that thesignal relationshipsonthechart have
been caculated using the NTSC dot clock
frequency, but thetimesindi cated areidentical
on PAL systems.

Accessto Static RAM isalwaysonecycle
for reads. Writesal sotakeonecycle—except
under certain conditions. What can dow down
a write is ‘mirroring’, where data is being
written through to the RAM in the host
computer. Mirroring isperformedin order to
make sure that the VIC chip, which reads
screen and color data from the computer’s
own RAM, has proper data for the display.
Since it isn't possible to detect in red time
exactly where (in memory) the VIC will be
looking for data, the SuperCPU’s default is
to mirror all writes to Bank $00 RAM.

A mirrored write doesn’t automatically
mean a speed pendty, however, since the
SuperCPU employsaone-byte cache (buffer)
for write-throughs. Refer to the Mirrored
Memory CacheLatchtiming. Y ou’ Il seethat
the cacheis cleared during the low phase of
the first dot clock cycle following the

Commodore World Issue 19 Reprint

computer’s Phase 2 signal going low. The
latchstayslow for 25ns, andthecacheisthen
ready for another byte to be written through.
Any byte must be in the cache at least 70 ns
prior to the dot clock high transition that
signals the computer’s Phase 2 line to go
high—any later than this and the cache
mechanism has to wait until the Phase 2
clock cyclesaround again. In either case, the
operation of the cache is transparent to
program timing as long as no additional
mirrored writes occur while the cache latch
statusis high.

This leads usto consider what happens if
the cache is aready full when a mirrored
write occurs. Theresult isaclock stretch for
the SuperCPU Phase 2 clock, which will stay
high until the cacheiscleared. Oncethishas
occurred, thewaiting byte can be put into the
cache, and the SuperCPU returns to normal
20MHz operation. Spacingwritestomirrored
memory (as well as using the optimization
modes to reduce mirroring) will help
maximize program efficiency. With one
mirrored store every 19th cycle you'll get
maximum throughput of one cache write per
1 MHz cycle, provided there are no other
specia functions that slow things down.

The next areawe'll look at is 1/O access,
which covers reads and writes to $00D000-
$OODFFF with 1/0 switched in, and also
includesafew miscellaneouslocations. Most
I/0 reads and writes follow the timing

specification shown as SCPU Phase 2 I/O
Reads/Writes. Any storeor load cycletol/O
causesthe SuperCPU Phase 2linetogo high
until the datacan bewrittenor read. Thestore
or load must occur at least 70 ns prior to the
dot clock high transition that signals the
computer’ sPhase2linetogohighinorderto
have the I/O access occur during the current
1MHzcycle. If theaccessisto standard /0,
the SuperCPU Phase 2 will transition low
about 105 ns after the rising edge of the dot
clock cycle that signals the host computer’s
Phase 2 to go low. This timing of the
SuperCPU’s Phase 2 line aso applies to
cachefull mirrored writesto RAM, memory
location $000001, and reads from $00DFO1,
$00DF21, $00FFOO. Furthermore, thistiming
isusedtoreadfromROM cartridgesinstalled
in the $008000-$009FFF or $00A000-
$0OBFFF memory areas. An 8-cyclespacing
of standard 1/0O access provides best
throughput.

Inadditiontostandard1/O readsandwrites,
thereisal ong /O Writetiming specification
that appliestolocations SO0DF01, $00DF21
and $00FF00. The long write has the same
input deadline as all other special timing
functions, but holds the SuperCPU Phase 2
line high 24 ns past the start of the fourth dot
clock cycle after the computer’s Phase 2 is
signaled to go low. Thistiming was created
to satisfy requirements of Commodore REU
DMA operations.

The final special 1/0 timing specification
only applies to writing to the CIA chips
($00DCO00-$00DDFF). Here, astandard I/O
write is performed, but the next processor
cycle (usualy afetch of the next opcode) is
stretched into the next computer Phase 2
cycle, andendswherealong /O writewould
end. It was necessary to use this timing to
make it impossible to read back from a CIA
during the two 1 MHz cycles following the
write. Thereason?BecausetheCIA 1/0Olines
are terminated with resistors, causing them
toreact slowly whengoing high. Readingtoo
soon can generate erratic results.

Last of all, thereisonefinal inconsistency
in timing that isn’t indicated on the chart.
This applies to accessing the special
SuperCPU RAM placed in the I/O area.
Access to this RAM takes two 20 MHz
cyclesinstead of one, becausethe SuperCPU
needsto first decodethat thisareaisn’t actual
1/0 before it can perform the load or store
function requested.

Conclusion

There are many factors to consider if your
program is to achieve optimal throughput.
Reducing mirroring, spreading special
accesses, and optimizing routinesthat really
need it will giveyou themost speed for your
effort, without making the process
excessively difficult and time-consuming.

®

-

Host Computer's
Dot Clock

Host Computer's
Phase 2 Clock

SuperCPU Special Function Timing Chart

[7ons

nuupguyuyyyiyuyyyyyyyL

>{90 nsI‘-

Mirrored Memory
Cache Latch

—

>{105 ns|<-

-—

> I<-24 ns

> |4-24 ns

SCPU Phase 2 -

I/0 Read/Write SGPU Phase 2 J
must be going low —o

by this point

SCPU Phase 2 'J

Long I/O Write

SCPU Phase 2 -

CIA Write J

SuperCPU RAM Expansion & Timing

816 Beat

