
SuperCPU RAM Expansion & Timing 1 816 Beat

SIMM Chart
The chart below indicates the size and
organization of 72-pin SIMMs supported by
the SuperRAM card for the SuperCPU. All
SIMMs must be Fast Page Mode type, 70ns
or faster.

SIMM Capacity Row Size Row/Column Adr.
1 MB (256K x 32/36) 2 KB 9/9
4 MB (1M x 32/36) 4 KB 10/10
8 MB (2M x 32/36) 4 KB 11/10
16 MB (4M x 32/36) 4 KB 12/10
16 MB (4M x 32/36) 8 KB 11/11

By Doug Cotton

from this memory. It’s also important to note
that programs don’t have to use the 65816’s
native mode to be able to access this extra
RAM, although there are some advantages
to doing so. The program
SUPERRAMFAKE, which accompanies this
article, contains a subroutine that shows
how extra memory can be accessed in 6502
emulation via “long” addressing modes.
We’ll discuss that more a little later, but we
should first look at how the SuperRAM card
fits into the SuperCPU memory scheme.

For a good overview, take a look at the
“SuperCPU 64/128 Common Memory
Map”. The areas in white (Banks $00, $01
and $F8-FF) are the memory found in every
SuperCPU, with or without memory
expansion. Banks $00 and $01 are static
RAM, while $F8-FF are used and reserved
banks for the system ROM. This map is
identical on both the 64 and 128 versions of
the SuperCPU, though the 128 version will
have two additional banks of static RAM
which will be swapped in at Banks $00 and
$01 as needed.

Given the general map, there is room for
expansion RAM at Banks $02 through $F7.
To avoid the need to translate addresses on
all expansion RAM, SIMM memory
addressing actually begins at Bank $00,

One of the more anticipated releases for the
SuperCPU is just around the corner. I’m
speaking of the SuperRAM card for the
SuperCPU 64, long awaited by many of the
developers involved in creating new programs
for SuperCPU-enhanced systems. The card
will allow larger programs or programs with
extensive data to be fully loaded into memory
(as opposed to bringing in separate modules
from disk, a process that is both slow and
inconvenient). New programs, written with
the SuperCPU and SuperRAM card in mind,
can offer more powerful features. But before
we get into technical details, let’s take a more
general look at the SuperRAM card itself.

Pictured on the right side of this page is the
prototype SuperRAM card which CMD has
developed for testing. The board contains
only a few components: a clock oscillator,
bus driver, a reprogrammable array logic
device (GAL), a digital delay chip, a complex
programmable logic device (CPLD), and a
handful of resistors and capacitors. There are
also two connectors on the back of the circuit
board (not shown) which attach the
SuperRAM card to the SuperCPU main board,
and a 72-pin SIMM (Single Inline Memory
Module) socket where the RAM SIMM is
installed.

As with the SuperCPU itself, the
SuperRAM card’s complex circuitry is mostly
inside the CPLD, which contains most of the

memory mapping, control and refresh
circuitry. While this vastly decreases the
amount of board space required, developing
the logic equations needed to program the
chip for a specific function often proves to be
very time-consuming.

The SIMM socket can be fitted with 72-
pin memory modules containing from one to
16 Megabytes of standard Fast Page DRAM.
It’s very important to make sure that the
SIMM used is standard Fast Page; EDO and
other 72-pin SIMM types are not compatible,
and will not operate correctly. The memory
must be rated at 70 ns or faster (the lower the
number, the faster the speed rating), but bear
in mind that faster RAM doesn’t translate
into faster access (the DRAM controller has
fixed speeds for performing memory access).

For additional information on compatible
SIMMs, see the SIMM Chart included with
this article. The chart fully specifies all
SIMMs approved for use with the SuperRAM
card.

The General Memory Map
Since the 65816 processor can address up to
16 Megabytes of RAM, the SuperRAM
memory is unlike previous RAM expanders
(such as the Commodore 17xx series REU’s)
in that programs can actually execute directly

RAM Expansion
Card Prototype

Slated for release in
the next few weeks is
the RAM Expansion
Card for the CMD
SuperCPU 64. This
card can contain from
1 to 16 Megabytes of
RAM (using standard
72-pin SIMMs) that
can be used by future
applications. A GEOS
driver is expected to
ship with the card.

Reprinted from Commodore World Issue 19

Copyright © 1997 Creative Micro Designs, Inc.

CMD SUPERCPU RAM EXPANSION & TIMING

816 Beat 2 Commodore World Issue 19 Reprint

Bank $00 - RAM

Banks $F8—FF - ROM

Banks $02—$0F
1 MB Expansion RAM

Banks $02—$3F
4 MB Expansion RAM

Banks $02—$7F
8 MB Expansion RAM

Banks $02—$F5
16 MB Expansion RAM

BANKS $F6—F7 - System RAMBanks $F6—F7 - System RAM

Bank $01 - PsuedoROM, RAM

SuperCPU 64/128
Common Memory Map

Sequential Read within Row1: 1 Cycle
Non-seq. Read within Column2: 1 Cycle
Non-seq. Read, new Column2 in Row1: 2 Cycles
Read from new Row1: 3.5 Cycles
Write within Row1: 1 Cycle
Write in new Row1: 3 Cycles
Read during Refresh3: up to 8.5 Cycles
Write during Refresh3: up to 8 Cycles

1Rows are 2K, 4K or 8K Bytes, depending on the
SIMM (see SIMM Chart).

2Columns are groups of four bytes each on
supported 72-pin SIMMs (see SIMM Chart).

3Refresh occurs approximately every 10
microseconds.

*At 1 MHz all times are 1 cycle (synchronized to
the computer’s Phase 2 clock), refresh is hidden.

although any expansion RAM that occupies
the same address area as Static RAM (Banks
$00 and $01) or ROM ($F8-FF) isn’t
accessible. The SIMM RAM Banks $00 and
$01 have been moved to Banks $F6 and $F7,
and reserved for future system use. This then
means that any system with expansion RAM
(any size) will have this extra RAM available
for future OS capabilities, but it also means
that the last Bank available for user programs
will be Bank $F5 (on a system with 16
Megabytes of expansion RAM installed).

Detecting Expansion RAM
Naturally, one of the more important
questions on programmer’s minds is, “How
do I detect RAM expansion, and how do I
know how much there is?” Okay, that’s two
questions, but we’ve got answers for both.

First, any new SuperCPU sold after the
new SuperRAM card becomes available will
sport a new version of the SuperCPU ROM.
Likewise, all SuperRAM upgrades sold to
users with older SuperCPUs will include the
new ROM. Thus, the first step in determining
if RAM expansion is present will be to check
the ROM version. This is accomplished by
reading four bytes, beginning at $00E487
(64 mode only!). These four bytes contain
the version number string in PETASCII. The
version that will provide initial support for
expansion RAM is “1.40”. Read these bytes
and compare for this number. If the version
number is lower, there’s no expansion; if it’s
the same or higher, there may be expanded
memory, and you’ll need to move on to the
next step.

If you found a version that supports RAM
expansion, read in four bytes beginning at
$00D27C. These bytes contain the following
information concerning RAM expansion:

$00D27C First Available Page
$00D27DBank of First Available Page
$00D27E Last Available Page+1
$00D27F Bank of Last Available Page+1

If there isn’t any extra RAM installed, all
four bytes will contain zeroes. The BASIC
program SUPERRAMDETECT provides an
example of checking these parameters and
calculating the available expansion memory.
Please note that these variables are only valid
in Bank $00 while I/O is switched in; should
you need to check for expansion RAM with
I/O out, these values are available in the same
locations of Bank $01.

If your application needs to use some
portion of expansion RAM, it must also
update the memory variables. This requires
switching in the SuperCPU H/W registers by
storing any value at $00D07E (decimal
53374). After you have modified the
variables, turn the SuperCPU H/W registers
back off by storing any value to $00D07F
(decimal 53375). Again, I/O must be enabled
during any of these changes, or you’ll need to
change the variables directly in Bank $01.

It is very important that you pay attention
to the expansion RAM variables, and that
you don’t make any assumptions with regard
to RAM availability; some future system
extensions or user programs may steal some
of the RAM before your application is started.
As a result, it would be wise to create your
program code and/or data segments in a
manner that allows them to be relocated.

CMD is presently working toward standards
and tools that will make writing and utilizing
relocatable code less painful, but it will make
the transition easier if 6502/65816
programmers start getting familiar with the
techniques now.

To assist you in testing routines that detect
RAM expansion, we’ve included the program
SUPERRAMFAKE with this article. You
may use this program to trick your SuperCPU
into believing that it has RAM expansion
available, as well as the proper OS version
required to support it.

Speed Considerations
As you may already know, Dynamic RAM
(DRAM) isn’t as fast as Static RAM (SRAM),
but it is far less expensive and available in
larger capacities. This explains why DRAM
was chosen for expansion memory.

Taking the speed into consideration, CMD
employed special circuitry into the
SuperRAM card’s DRAM controller to help
the DRAM keep up. Understanding how this
controller ‘thinks’ is the key to optimizing
the speed of expansion RAM accesses on the
SuperCPU.

DRAM, unlike SRAM, must be pre-
charged before valid data can be read from a
specific address. DRAM also requires
periodic ‘refresh’ in order to maintain its
contents. These are the factors that add time
to accessing the memory. The memory cells
themselves in Dynamic memories are
organized into an array of rows and columns.
On memory modules such as the SIMMs
used by the SuperRAM card, these rows and
columns are combined in a way that allows

Expansion RAM Speed
Characteristics at 20 MHz*

SuperCPU RAM Expansion & Timing 3 816 Beat

all the bits in a byte or a word to be precharged
and accessed as a group.

If you look at the SIMM Chart in this
article, you’ll notice that we included the
number of addressable bits for rows and
columns, as well as the number of bytes
within a specific row. Let’s look at the 1 MB
SIMM to understand how this information
describes the SIMM.

There are 9 bits used to address rows, and
another 9 bits for columns. Since 2^9=512,
we can deduce that there are 512*512 array
crosspoints, which gives us 262,144 unique
addresses. Divide that by 1024 (1K), and
you’ll get 256... so there are 256K addresses

on this SIMM. Since each address has 32 bits
of data (or 36 on a parity SIMM), there are
4*256K, or one Megabyte (1,048,576 Bytes)
of 8- or 9-bit memory locations.

Still with me? Okay, we can also deduce
from the SIMM is that each row contains 2
KB ($800 bytes) of 8- or 9-bit data, since
there are 512 columns of 4 bytes each per
row.

Now let’s look at how the SuperRAM
memory controller handles things. Assume
for a moment that you have a routine situated
at $020000, the first available expansion
memory location. This location is the first
byte in a row ($020000/$800=$40 with no

remainder), and also the first byte of the first
column of that row (always the case at the
start of any new row, though we can do the
math $020000/$04=$8000 with no
remainder). At this location you have the
following code:

 020000 A9 03 LDA #$03

 020002 8F 00 03 02 STA $020300

Let’s assume you jump to this code from
another Bank or row, and it begins executing.
Normally the LDA immediate would require
2 cycles to complete; 1 cycle to load the
instruction, and 1 cycle to fetch the immediate

SUPERRAMFAKE√∑

1Ø print"{CLEAR/HOME}{CRSR DN}{14 SPACES
}superramfake"
2Ø v$="1.4Ø":sp=Ø:sb=Ø:ep=Ø:eb=Ø
3Ø h$="Ø123456789abcdef"
9Ø :
1ØØ print"{HOME}{3 CRSR DN}{15 SPACES}1.
{2 SPACES}Ø mb"
11Ø print"{15 SPACES}2.{2 SPACES}1 mb"
12Ø print"{15 SPACES}3.{2 SPACES}4 mb"
13Ø print"{15 SPACES}4.{2 SPACES}8 mb"
14Ø print"{15 SPACES}5. 16 mb"
15Ø print"{15 SPACES}6. custom"
16Ø :
17Ø getk$:ifk$=""then17Ø
18Ø k=asc(k$+chr$(Ø))-48
19Ø ifk<1ork>6thenk$="":goto17Ø
2ØØ :
21Ø onkgoto3ØØ,31Ø,32Ø,33Ø,34Ø,35Ø
3ØØ sp=Ø:sb=Ø:ep=Ø:eb=Ø:goto5ØØ
31Ø sp=Ø:sb=2:ep=Ø:eb=16:goto5ØØ
32Ø sp=Ø:sb=2:ep=Ø:eb=64:goto5ØØ
33Ø sp=Ø:sb=2:ep=Ø:eb=128:goto5ØØ
34Ø sp=Ø:sb=2:ep=Ø:eb=246:goto5ØØ

2Ø1

86
144
148
2Ø

117
147
38
78
1Ø3
218
187
96
92
3
126
84
174
11Ø
2Ø
243

SUPERRAMDETECT√∑

5 rem get version
1Ø v$=""
2Ø fori=585Ø3to585Ø6
3Ø : v$=v$+chr$(peek(i))
4Ø next
5Ø v=val(v$)
6Ø :
7Ø ifv<1.4Øthen2ØØ
8Ø :
1ØØ rem get ram size & location
11Ø sp=peek(53884) : rem start page
12Ø sb=peek(53885) : rem start bank
13Ø ep=peek(53886) : rem end page
14Ø eb=peek(53887) : rem end bank
142 ifsb+sp=Øthen2ØØ
145 :
15Ø x=(eb*256+ep)-(sb*256+sp)
16Ø :
17Ø printx*256"bytes available"
18Ø print" starting at"(sb*256+sp)*256
19Ø end
192 :
2ØØ print"no ram expansion"
21Ø end

112
243
118
43
17Ø
136
118
16Ø
138
32
7Ø
89
153
144
54
2Ø3
174
218
178
23
63
25Ø
43
83

SUPERRAMFAKE √∑

35Ø gosub4ØØ:goto5ØØ
36Ø :
4ØØ rem input custom values
41Ø :
42Ø print"{2 CRSR DN}enter values in hex
!":print"note: end address is last addre
ss+1{CRSR DN}"
43Ø input"starting bank (sb)";ui$:gosub4
6Ø:sb=ui
431 input"starting page (sp)";ui$:gosub4
6Ø:sp=ui
432 input"ending bank{3 SPACES}(eb)";ui$
:gosub46Ø:eb=ui
433 input"ending page{3 SPACES}(ep)";ui$
:gosub46Ø:ep=ui
44Ø return
45Ø :
46Ø ui=Ø
462 fori=1to16
464 : ifleft$(ui$,1)=mid$(h$,i,1)thenui=
ui+((i-1)*16)
466 : ifright$(ui$,1)=mid$(h$,i,1)thenui
=ui+(i-1)
47Ø next
48Ø return
49Ø :
5ØØ rem store dummy values
5Ø1 :
5Ø4 pl=124Ø39:fori=1to4:pv=asc(mid$(v$,i
,1)):gosub518:pl=pl+1:next
5Ø5 :
5Ø6 pl=11942Ø:pv=sp:gosub518
5Ø7 pl=pl+1:pv=sb:gosub518
5Ø8 pl=pl+1:pv=ep:gosub518
5Ø9 pl=pl+1:pv=eb:gosub518
51Ø :
516 sys64738
517 :
518 b=int(pl/65536):h=int((pl-(b*65536))
/256):l=pl-((b*65536)+(h*256))
519 :
52Ø poke49152,169 : rem lda#
521 poke49153,pv : rem value to store
522 poke49154,143 : rem sta abs long
523 poke49155,l : rem lo addr
524 poke49156,h : rem hi addr
525 poke49157,b : rem bank
526 poke49158,96 : rem rts
527 :
528 sys49152
53Ø return

146
163
126
213
91

54

24Ø

1Ø1

35

68
253
14Ø
132
141

59

9Ø
1Ø8
38
194
45
11Ø

49
44
225
222
11
58
211
61
131

67
1Ø4
1ØØ
23Ø
36
168
187
23Ø
75
188
162

816 Beat 4 Commodore World Issue 19 Reprint

byte into the accumulator. But in this case it
would require 4.5 cycles; 3.5 cycles to fetch
the instruction from a new row in expansion
RAM, then 1 more cycle to fetch the
immediate byte. The latter took only 1 cycle
because the row and column were already
charged, and the controller knows this. If
you’re wondering how an operation can take
an uneven number of cycles, you need to take
a look at the sidebar on Clock Stretching.

Now the next instruction, STA, is fetched
in 1 cycle, and the three address bytes are all
fetched at 1 cycle for each. When the second
byte of the address (the $03 at $020004) is
fetched, we cross over into a new column.
Normally this would require an extra cycle,
due to column address access timing
requirements; however, the controller outputs
the next column address when the processor
reads from $020003 by assuming that the
next access will be in the following memory
location. By always ‘guessing’ that the next
access will be sequential, the DRAM
controller saves time when this proves to be
the case.

Back to the example, there’s one operation
left to perform: store the accumulator to
memory. This usually takes 1 cycle, but the
location where it is to be stored is in a distant
column of the same row, so it takes 2 cycles.

This set of instructions would normally
take 7 cycles in SRAM, but in expansion
RAM, it requires 10.5 cycles. This may
seem slow at first, but when contrasted
with a stock 64 running at 1 MHz, we’re
still operating over 13 times faster (the
throughput is approximately 13.4 MHz in
this particular case). We could also modify
the program so that the store instruction
places the value into Static RAM instead
of Dynamic, say at $003000, and save an
additional cycle. This would kick the
effective speed up to 14.7 MHz.

It’s also important to note that most of our
loss in throughput came when our code began
executing in a new row. This doesn’t happen
often, since rows are at least 2 KB wide.
Consider a whole 2 KB segment of contiguous
code executing from DRAM, with all external
reads and writes going to Static RAM. Under
those circumstances you might achieve a
throughput of over 19.9 MHz—not
considering refresh or occasional jumps and
branches.

Refresh? Yes, DRAM needs to be refreshed
to maintain its contents, and at these speeds,
it can no longer be ‘hidden’ as it commonly
is at 1 MHz. Refresh occurs once

Clock-Stretching
While many of the operations within the SuperCPU occur at a normal 20 MHz rate, some
operations may take longer than the single cycle in which they should usually occur on
a 1 MHz Commodore computer. Under these circumstances, the high half of the clock
signal is stretched to meet the requirements of the operation. In the example below we
show the System Timing Base (40 MHz) and how the System Clock itself would look
while executing instructions at full speed (Normal Operations). The bottom example
shows what happens during an operation that requires 3.5 20 MHz clock cycles to
complete. The low part of the cycle has a duration of 25 nanoseconds, or half of the
duration of a 20 MHz cycle; the high portion of the cycle is stretched, giving it a duration
of 150 nanoseconds. The total duration of this cycle is 175 nanoseconds, or 3.5 times
the 50 nanosecond period of a standard 20 MHz cycle. You may note that this causes
what may appear to be a phase inversion; that is to say, the clock signal is now low during
a period in which it originally would have been high, and vice-versa. This factor is of no
importance, however, and only becomes an issue when synchronization with the host
computer’s clock becomes necessary. When that occurs, clock stretching is used as
required to bring the SuperCPU clock into phase with the host computer’s clock.

approximately every 10 microseconds (about
200 cycles) and can cause a 1 cycle DRAM
memory operation to take up to 8.5 cycles to
complete. We could see up to 11 refreshes
while executing a 2 KB segment of code, so
if take this into consideration, our throughput
drops to about 19.2 MHz.

Now if we also consider a branch or jump
every 20 bytes (that’s actually quite a high
average), we get an overall throughput of
around 18.3 MHz; still a remarkably good
figure. Naturally, your own programs will
vary from this mark, depending on how you
write them, and how often you perform other
accesses that can cause slowdowns (such as
I/O access or frequent writes to mirrored
memory).

Other SuperCPU Timing Issues
With the proverbial ‘can of worms’ now
open, let’s consider the other timing aspects
of the SuperCPU. The SuperCPU Special
Function Timing Chart will be our guide as
we discuss the various functions. Please note

that the signal relationships on the chart have
been calculated using the NTSC dot clock
frequency, but the times indicated are identical
on PAL systems.

Access to Static RAM is always one cycle
for reads. Writes also take one cycle—except
under certain conditions. What can slow down
a write is ‘mirroring’, where data is being
written through to the RAM in the host
computer. Mirroring is performed in order to
make sure that the VIC chip, which reads
screen and color data from the computer’s
own RAM, has proper data for the display.
Since it isn’t possible to detect in real time
exactly where (in memory) the VIC will be
looking for data, the SuperCPU’s default is
to mirror all writes to Bank $00 RAM.

 A mirrored write doesn’t automatically
mean a speed penalty, however, since the
SuperCPU employs a one-byte cache (buffer)
for write-throughs. Refer to the Mirrored
Memory Cache Latch timing. You’ll see that
the cache is cleared during the low phase of
the first dot clock cycle following the

SuperCPU RAM Expansion & Timing 5 816 Beat

SuperCPU Special Function Timing Chart

computer’s Phase 2 signal going low. The
latch stays low for 25 ns, and the cache is then
ready for another byte to be written through.
Any byte must be in the cache at least 70 ns
prior to the dot clock high transition that
signals the computer’s Phase 2 line to go
high—any later than this and the cache
mechanism has to wait until the Phase 2
clock cycles around again. In either case, the
operation of the cache is transparent to
program timing as long as no additional
mirrored writes occur while the cache latch
status is high.

This leads us to consider what happens if
the cache is already full when a mirrored
write occurs. The result is a clock stretch for
the SuperCPU Phase 2 clock, which will stay
high until the cache is cleared. Once this has
occurred, the waiting byte can be put into the
cache, and the SuperCPU returns to normal
20 MHz operation. Spacing writes to mirrored
memory (as well as using the optimization
modes to reduce mirroring) will help
maximize program efficiency. With one
mirrored store every 19th cycle you’ll get
maximum throughput of one cache write per
1 MHz cycle, provided there are no other
special functions that slow things down.

The next area we’ll look at is I/O access,
which covers reads and writes to $00D000-
$00DFFF with I/O switched in, and also
includes a few miscellaneous locations. Most
I/O reads and writes follow the timing

specification shown as SCPU Phase 2 I/O
Reads/Writes. Any store or load cycle to I/O
causes the SuperCPU Phase 2 line to go high
until the data can be written or read. The store
or load must occur at least 70 ns prior to the
dot clock high transition that signals the
computer’s Phase 2 line to go high in order to
have the I/O access occur during the current
1 MHz cycle. If the access is to standard I/O,
the SuperCPU Phase 2 will transition low
about 105 ns after the rising edge of the dot
clock cycle that signals the host computer’s
Phase 2 to go low. This timing of the
SuperCPU’s Phase 2 line also applies to
cache full mirrored writes to RAM, memory
location $000001, and reads from $00DF01,
$00DF21, $00FF00. Furthermore, this timing
is used to read from ROM cartridges installed
in the $008000-$009FFF or $00A000-
$00BFFF memory areas. An 8-cycle spacing
of standard I/O access provides best
throughput.

In addition to standard I/O reads and writes,
there is a Long I/O Write timing specification
that applies to locations $00DF01, $00DF21
and $00FF00. The long write has the same
input deadline as all other special timing
functions, but holds the SuperCPU Phase 2
line high 24 ns past the start of the fourth dot
clock cycle after the computer’s Phase 2 is
signaled to go low. This timing was created
to satisfy requirements of Commodore REU
DMA operations.

The final special I/O timing specification
only applies to writing to the CIA chips
($00DC00-$00DDFF). Here, a standard I/O
write is performed, but the next processor
cycle (usually a fetch of the next opcode) is
stretched into the next computer Phase 2
cycle, and ends where a long I/O write would
end. It was necessary to use this timing to
make it impossible to read back from a CIA
during the two 1 MHz cycles following the
write. The reason? Because the CIA I/O lines
are terminated with resistors, causing them
to react slowly when going high. Reading too
soon can generate erratic results.

Last of all, there is one final inconsistency
in timing that isn’t indicated on the chart.
This applies to accessing the special
SuperCPU RAM placed in the I/O area.
Access to this RAM takes two 20 MHz
cycles instead of one, because the SuperCPU
needs to first decode that this area isn’t actual
I/O before it can perform the load or store
function requested.

Conclusion
There are many factors to consider if your
program is to achieve optimal throughput.
Reducing mirroring, spreading special
accesses, and optimizing routines that really
need it will give you the most speed for your
effort, without making the process
excessively difficult and time-consuming.

