
Some New Libraries
for Power C

Glenn Holmer (“ShadowM”)
C=4 Expo 2007

The Power C Compiler

● published by Pro-Line, Spinnaker
● K & R (pre-ANSI) C, old-style function

declarations
● good standard libraries, library utility
● excellent editor with multiple buffer

support
● not difficult to find

K & R function declarations

modern function declaration:
 int foo(int bar) {
 // clever code here
 }

K & R (old-style) function declaration:
 int foo(bar)
 int bar; {
 // clever code here
 }

The Power C Editor

Power C Idiosyncrasies

● programs not reloaded when run again
● on rare occasions, compiler locks up
● trim utility is buggy, don't use
● works well with SuperCPU
● works well with CMD drives, except that

include files can't be pulled in from other
directories

C-ASSM assembler

● public-domain assembler, written in C to
be compiled with Power C

● a bit slow, but worth it!
● produces Power C object files that can be

linked with your programs
● supports include files
● source available, also a reverse

assembler for Power C object files

Existing Power C Libraries

● enhanced shell
● scripting utilities
● graphics libraries
● bitmapped windowing library
● these were available on Q-Link and the

Pro-Line BBS

Some New Libraries

● enhanced text input with error bell
● character-based windowing
● menus and submenus
● widgets (label, text, checkbox, listbox)
● Q-Link style function key definitions
● disk, partition, and file enumeration
● relative file support

Using the Libraries

● “SWL” libraries (menus, widgets):
● #include <swl.h>
● have swl*.o (six files) on your work disk
● link with swl.l

● disk libraries (drive lists, relative files):
● #include <disk.h>
● link with drv-query.o, relfiles.o

Enhanced Text Input

● cursor location
● single-line text input
● basic cursor controls
● restricted length and content
● customizable “end keys”
● minimal support for control characters

Enhanced Text Example

#include <swl.h>
extern char allowed;

char str[13];
strcpy(str, "123045607890");
addEnder(KEY_SEL); /* make F1 work like CR */
strcpy(&allowed, “-”); /* allow entry of '-' */

swl_init(); /* initialize interrupt handler */
/* numeric only, but allow certain keys,
 and check the “endkeys” table to exit */
wchrin(str, MSK_NUM | MSK_ALW | MSK_END);

Enhanced Text Demo

Character-Based Windowing

● windows are drawn directly to screen
memory, which is buffered and restored

● support for multiple overlapping
windows (8 maximum)

● special routines for cursor location
within a window (only the last opened
window can be printed into)

Windowing Example

openWnd(15, 10, 20, 10, "Test");
wlocate(0, 0);
putchar('X');
wlocate(17, 7);
putchar('Y');

openWnd(13, 8, 13, 5, "Test2");
wlocate(0, 0);
putchar('X');
if (wlocate(11, 3)) { /* should fail */
 putchar('Y');
}
clsWnd(); /* second window */
clsWnd(); /* first window */

Windowing Demo

Menus and Submenus

● menus are a singly-linked list of
structures; submenus called recursively

● menu mode opens a window, list mode
doesn't buffer and ignores submenus
(meant for widget)

● menu items are scrollable
● “constructor” and item add functions
● can attach a dispatch function to an item

Menu Structure

struct menu {
 int mLeft; /* left edge (in columns) */
 int mTop; /* top edge (in rows) */
 int mVisible; /* maximum visible items */
 int mCuritem; /* current selected item */
 int mTopitem; /* (internal use) */
 struct menu *mParent;
 char *mTitle;
 int *mExtend; /* for "subclassing" */
 int *mFirst; /* pointer to first menu item */
 int mChosen; /* true if item has been chosen */
 int mEndkey; /* key used to bypass menus */
};

Menu Item Structure

struct menuitem {
 char *iText;
 int (*iAction)(); /* dispatch function */
 int *iExtend; /* for "subclassing" */
 struct menu *iSubmenu; /* pointer to submenu */
 struct menuitem *iNext; /* next menu item */
};

Menu/Submenu Example

struct menu *menu, *submenu, *thisMenu;
menu = newMenu(8, 8, 0, "Menu Title");
menu->mVisible = 4; /* no. visible items */
menu->mCuritem = 2; /* selected item */
submenu = newMenu(12, 12, menu, "Submenu Title");
submenu->mVisible = 5;
submenu->mCuritem = 3;
addItem(menu, newItem("Item Zero"));
...
addMenu(menu, submenu);
item = newItem("Subitem Zero");
item->iAction = &action;
addItem(submenu, item);
...
thisMenu = doMenu(menu); /* or doList() */

Menu/Submenu Demo

Widgets

● widgets are a circular, doubly-linked list
of structures

● label, text input, checkbox, listbox
● navigation with F7, F8, select with F1,

dismiss with F5 (à la Q-Link)
● each widget can have its own allowed

keys and end keys
● dispatch functions cause loop to exit

Widget Structure

struct widget {
 int wType, wLeft, wTop, wMask, wState;
 char wAllowed[16]; /* wchrin() allowed chars. */
 char wEndkeys[16]; /* wchrin() end keys */
 char *wText;
 int *wExtend; /* for "subclassing" */
 int (*wAction)(); /* dispatch function */
 struct widget *wPrev;
 struct widget *wNext;
};

Widget Example
...
chkOne = newChk(14, 4, TRUE, " ");
strcpy(chkOne->wEndkeys, " ");
chkOne->wAction = &chkAct;
addWdg(chkOne, lblZero);
...
txtTwo = newTxt(18, 6, "123045607890");
txtTwo->wMask = MSK_NUM | MSK_ALW;
setAllow("-", txtTwo);
addWdg(txtTwo, lblZero);
...
mnuList = newMenu(22, 10, 0, "");
mnuList->mVisible = 5;
mnuList->mCuritem = 1;
addItem(mnuList, newItem("08 (CMD FD)"));
...
lst = newList(22, 10, mnuList);
lst->wAction = &itemAct;
addWdg(lst, lblZero);
...

Widget Example (cont'd.)
swl_init(); /* enable IRQ handler */
initWdg(); /* enable widget end keys (F1, F5, F7, F8) */
thisWdg = lblZero; /* first widget */
while (TRUE) {
 thisWdg = doWidget(thisWdg, FALSE);
 if (endkey == KEY_EXIT) {
 break;
 }
 if (thisWdg->wAction) {
 (*(thisWdg->wAction))();
 if (endkey == KEY_PREV) {
 do {
 thisWdg = thisWdg->wPrev;
 } while (thisWdg->wType == WDG_LBL);
 } else {
 thisWdg = thisWdg->wNext;
 }
 } else {
 break;
 }
}
killWdg();

Widget Demo

Disk Enumeration

● list attached drives and their types
(based on code by Todd Elliott)

● disk structure provided in header, but
it's up the the programmer to populate it

● list partitions on CMD drives
● list files on current disk / partition (pass

first structure, the rest are allocated)

Disk Enumeration Structures

/* file, directory, or partition */
struct dirent {
 int siznum; /* file size or partition no. */
 char fileName[17];
 char fileType[4];
 struct dirent *pNext;
};

struct drive {
 int device;
 int drvType;
 struct dirent *dPartn;
 struct drive *dNext;
};

Disk Enumeration Example

extern char drives[];
struct drive *firstDrv, *nextDrv;
int i;

firstDrv = calloc(1, sizeof(struct drive));
drvQuery(); /* call assembler module */
nextDrv = 0;
for (i = 0; i < 23; i++) {
 if (drives[i]) {
 if (nextDrv == 0) {
 nextDrv = firstDrv;
 } else {
 nextDrv->dNext = calloc(1, sizeof(struct drive));
 nextDrv = nextDrv->dNext;
 }
 nextDrv->device = i + 8;
 nextDrv->drvType = drives[i];
 nextDrv->dPartn = 0;
 nextDrv->dNext = 0;
 }
 ...

Disk Enumeration cont'd.

 if (drives[i] & 0x80) { /* CMD drive */
 nextDrv->dPartn = calloc(1, sizeof(struct dirent));
 result = getDir(i + 8, nextDrv->dPartn, TRUE);
 if (result) {
 nextDrv->dPartn = 0;
 }
 }
}

/* At this point, dPartn is the head of a linked list of dirent
structures (which could also be files and directories). */

Enumeration Demo

Relative File Support

● provides workaround for the infamous
“Shiloh's Raid” bug (based on George
Hug's code)

● record offsets supported
● correctly deals with overflows (error 51)

and attempts to read past the end of a
record

● OK to use fopen() and open() at the
same time the relative file is open

Relative File Example

struct datum { ... };
int result, recno, offset;

result = relopen(5, 8, 5, “relfile”, 64);
recno = 123; offset = 1;
result = relwrite(&datum, sizeof(struct datum),
 recno, offset);

result = relread(&datum, sizeof(struct datum),
 recno, offset);

/* Note that there is no position command in the
 API, as it is always used within the context of
 a read or write. */

relclose();

Relative File Demo

Getting the Libraries

● http://lyonlabs.org/commodore/powerc.html

● I'll be traveling during May 2007, but will
be available for questions after that

● Q-Link: ShadowM
● gholmer@ameritech.net

(for the Q-Link challenged)

