Some New Libraries
for Power C

Glenn Holmer (“ShadowM?”)
C=4 Expo 2007

The Power C Compiler

* published by Pro-Line, Spinnaker

K & R (pre-ANSI) C, old-style function
declarations

» good standard libraries, library utility

« excellent editor with multiple buffer
support

* not difficult to find

K & R function declarations

modern function declaration:

int foo(int bar) {
// clever code here

}

K & R (old-style) function declaration:

int foo(bar)
int bar; {
// clever code here

}

The Power C Editor

swl_init(); % enable IEQ handler **/7

:|.I'I:|.1:||'-|-|:I9{}
ThisH d?
while TEU
A¥ in window: M7
tThiskHdg = doMidgeti{thiskHdg, TRUE}};
A% IFf the loop was exited because of
* widget dispatch invoke it manual
* {unless KE EHIf was pressed) and
#*# re—enter the 100 at the next wid
if (endkey == KEY_EXZIT>» {
break;

if (thisHdg—>wAC i
(M{thisHdg—2whA I3CD;
ifd{e?dhey == REU) (£

0
thiEHd? sHdg—>wPrewv;

- }lwhile th15Hdg *>wliype == HDNG_L
else
ThiskHdg = thisHdg—>wHext;

¥
¥ else {

lhlzeru,
» 4

Power C ldiosyncrasies

programs not reloaded when run again
on rare occasions, compiler locks up
traim utility is buggy, don't use

works well with SuperCPU

works well with CMD drives, except that
include files can't be pulled in from other
directories

C-ASSM assembler

* public-domain assembler, written in C to
be compiled with Power C

e a bit slow, but worth it!

» produces Power C object files that can be
linked with your programs

e supports include files

e source available, also a reverse
assembler for Power C object files

Existing Power C Libraries

* enhanced shell

* scripting utilities

» graphics libraries

* bitmapped windowing library

 these were available on Q-Link and the
Pro-Line BBS

Some New Libraries

 enhanced text input with error bell

» character-based windowing

* menus and submenus

» widgets (label, text, checkbox, listbox)
* Q-Link style function key definitions
 disk, partition, and file enumeration

* relative file support

Using the Libraries

» “SWL” libraries (menus, widgets):
 #include <swl.h>

* have swl*.0 (six files) on your work disk
 link with swl .1

o disk libraries (drive lists, relative files):

 #include <disk.h>
* link with drv-query.o, relfiles.o

Enhanced Text Input

cursor location

single-line text input

basic cursor controls

restricted length and content
customizable “end keys”

minimal support for control characters

Enhanced Text Example

#include <swl.h>
extern char allowed;

char str[13];
strcpy(str, "123045607890");

addEnder (KEY_SEL) ; /* make F1 work 1ike CR */
strcpy(&allowed, “-7); /* allow entry of '-' */
swl_1nit(); /* 1nitialize interrupt handler */

/* numeric only, but allow certain keys,
and check the “endkeys” table to exit */
wchrin(str, MSK_NUM | MSK_ALW | MSK_END);

Enhanced Text Demo

Top Banner {centered)l}

tThis should bBe at 18, &

cOotTom DBannenr right

Character-Based Windowing

 windows are drawn directly to screen
memory, which is buffered and restored

» support for multiple overlapping
windows (8 maximum)

» special routines for cursor location
within a window (only the last opened
window can be printed into)

Windowing Example

openWnd(15, 10, 20, 10, "Test");
wlocate(0, 0);

putchar('X"');

wlocate(17, 7);

putchar('Y");

openWnd(13, 8, 13, 5, "Test2");

wlocate(0, 0);

putchar('X");

1f (wlocate(11l, 3)) { /* should fail */
putchar('Y');

¥

clsWnd(); /* second window */

clsWnd(Q; /* first window */

Windowing Demo

11560 0 0 2050 0156 0100 €010 £ 00 S S0 S 0 S 0 £
D P D P [P im [i [o Do o o o o P P P i o o o=
0 0 10 10 10 0 0 . 0 8 0 8 0 8 0 8 0 L £
L LR AL AL AL AL R
T B B B ' b N
ECRE S ER T R) == | cacicrenen
2 L e e e Lt L e
e e e o o e o e e el el
10 0 0 5 0 S
MAOOHNHRTTS MENTE
10 10 60 20 3 £ £ 0 cagaEaae
[im P om [o o= = o= == e
810 8 0 5 £ D £ LA
UL
b B B
ERgEREEN
e Lt Lt L e e
e e e o e o e o] e e el |
10 0 0 0 0 D)
mOOHO DD
00 CAI00 SA0 CaLCy
[P o P o o e [
0 L0 L0 L 1
AR @
B B B o S b B B B B e B B
E R SR SR YT L I L A L L
B N N T T S I C S C S S I N

B e e B
e e L e e e L e L L L e e L e,
B T S S S S U S S S S]
er e e e v]] v v v e e e 1
1 0 2 0 0 5 5 0 2

Menus and Submenus

menus are a singly-linked list of
structures; submenus called recursively

menu mode opens a window, list mode
doesn't buffer and ignores submenus
(meant for widget)

menu items are scrollable
“constructor” and item add functions
can attach a dispatch function to an item

Menu Structure

struct menu {

int
1nt
int
int
int

mLeft; [/
mlop; /&
mVisible; /*
mCuritem; /*
mlTopitem; /*

left edge (in columns)
top edge (in rows)
maximum visible 1tems
current selected 1tem
(internal use)

Al LY/ Al oL A
" ” " ” ”

struct menu *mParent;
char *mTitle;

int
1nt
int
1nt

mExtend; /
*mFirst; /¥
mChosen; /*
mEndkey; /*

for "subclassing"

pointer to first menu item
true if i1tem has been chosen
key used to bypass menus

h"
”~n /
h"
”n /
."
”~n /
."
”~n /

Menu Item Structure

struct menuitem {
char *1Text;
int (*1Action) (); /%
int *1Extend; /5
struct menu *iSubmenu; /*
struct menuitem *i1Next; /*

dispatch function
for "subclassing"

pointer to submenu *

hext menu 1tem

(] (] (]
P 2ol]

Menu/Submenu Example

struct menu *menu, *submenu, *thisMenu;

menu = newMenu(8, 8, 0, "Menu Title");
menu->mVisible = 4; /* no. visible 1tems */
menu->mCuritem = 2; /* selected 1tem */

submenu = newMenu(12, 12, menu, "Submenu Title"):
submenu->mVisible = 5;

submenu->mCuritem = 3;

addItem(menu, newItem("Item Zero"));

addMenu(menu, submenu);

1tem = newItem("Subitem Zero");
1tem->1Action = &action;
addItem(submenu, 1tem);

thisMenu = doMenu(menu); /* or doList() */

Menu/Submenu Demo

Running in menu mode.

Title
Two
Three
Four

Submenu Title
Subitem Fero
Subitem One
Subitem Two
ubitem hree
ubitem our

menutest (submenu item B has dispatchl

Widgets

» widgets are a circular, doubly-linked list
of structures

 |label, text input, checkbox, listbox

* navigation with F7, F8, select with F1,
dismiss with F5 (a la Q-Link)

* each widget can have its own allowed
keys and end keys

» dispatch functions cause loop to exit

Widget Structure

struct widget {
int wlype, wLeft, wlop, wMask, wState;
char wAllowed[16]; /* wchrin() allowed chars. */
char wEndkeys[16]; /* wchrin() end keys */
char *wText;
int *wExtend; /% for "subclassing" */
int (*wAction)(; /* dispatch function */
struct widget *wPrev;
struct widget *wNext;

Widget Example

chkOne = newChk(14, 4, TRUE, " ");
strcpy(chkOne->wEndkeys, " ");
chkOne->wAction = &chkAct;

addwdg (chkOne, 1blZero);

txtTwo = newTxt(18, 6, "123045607890");
txtTwo->wMask = MSK_NUM | MSK_ALW;
setAlTow("-", txtTwo);

addwdg (txtTwo, 1blZero);

mnuList = newMenu(22, 10, 0, "");
mnuList->mVisible = 5;

mnuList->mCuritem = 1;

addItem(mnuList, newItem("08 (CMD FD)"));

ié£ = newList(22, 10, mnulList);
Tst->wAction = &itemAct;
addwdg(lst, 1TblZero);

Widget Example (cont'd.)

swl_1nit(); /* enable IRQ handler */
initWdg(); /* enable widget end keys (F1, F5, F7, F8) */
thisWdg = 1blZero; /* first widget */
while (TRUE) {
thisWdg = doWidget(thisWdg, FALSE);
1f (endkey == KEY_EXIT) {
break;
}
it (thisWdg->wAction) {
(*(thisWdg->wAction)) O ;
if (endkey == KEY_PREV) {
do {
thisWdg = thisWdg->wPrev;
} while (thisWdg->wType == WDG_LBL);
} else {
thisWdg = thisWdg->wNext;
}

} else {
break;

}

}
kiTlwdgQ ;

Widget Demo

812345678981 2345678981 2345678981 234567TE
Hidget Test

Hidget zero: text
Checkbox: ¢
Hidget one: 123845687838

2]
1
2
3
i
G
T
g
3
a
1
2
3
i
6
T
8
2)
a
1
2
3

lastT menu item has a handler

Disk Enumeration

* |list attached drives and their types
(based on code by Todd Elliott)

» disk structure provided in header, but
it's up the the programmer to populate it

e list partitions on CMD drives

o |ist files on current disk / partition (pass
first structure, the rest are allocated)

Disk Enumeration Structures

/* file, directory, or partition */
struct dirent {
int siznum; /* file size or partition no. */
char fileName[1l7];
char fileTypel[4];
struct dirent *pNext;

}s

struct drive {
1nt device;
int drvType;
struct dirent *dPartn;
struct drive *dNext;

Disk Enumeration Example

extern char drives|[];
struct drive *firstDrv, *nextDrv;
int i;

firstDrv = calloc(1l, sizeof(struct drive));
drvQuery(); /* call assembler module */
nextDrv = 0;
for (i =0; 1 < 23; i++) {
if (drives[i]) {
if (nextDrv == 0) {
nextDrv = firstDrv;
} else {
nextDrv->dNext = calloc(l, sizeof(struct drive));
nextDrv = nextDrv->dNext;
}
nhextDrv->device = 1 + 8;
nextDrv->drvType = drives[i];
nhextDrv->dPartn = 0;
nhextDrv->dNext = O;

Disk Enumeration cont'd.

if (drives[i] & O0x80) { /* CMD drive */
nextDrv->dPartn = calloc(l, sizeof(struct dirent));
result = getDir(i + 8, nextDrv->dPartn, TRUE);
if (result) {
nextDrv->dPartn = 0;
}

}
}

/* At this point, dPartn is the head of a linked 1list of dirent
structures (which could also be files and directories). */

Enumeration Demo

E Hriueg found, B8 are CHD=.

Relative File Support

provides workaround for the infamous
“Shiloh's Raid” bug (based on George
Hug's code)

record offsets supported

correctly deals with overflows (error 51)
and attempts to read past the end of a
record

OK to use fopen() and open() at the
same time the relative file is open

Relative File Example

struct datum { ... };
int result, recno, offset;

result = relopen(5, 8, 5, “relfile”, 64);

recno = 123; offset = 1;

result = relwrite(&datum, sizeof(struct datum),
recno, offset);

result = relread(&datum, sizeof(struct datum),
recno, offset);

/* Note that there 1s no position command in the
API, as it is always used within the context of
a read or write. */

relclose();

Relative File Demo

relread =
reading records, hit a key...

result: 8, record: 1 one
result: 8, record: 2 7two
result: 8, record: 3I-three
overwrite test:
junk: 52bd8, result: 51
overread test:
result: cord: 8123456783981 234567898
ig%dﬁﬁ?ﬂﬂﬁi 453678981 23456T78981234536T898
offsetsshort write test:
= i |
B, record: 1234536789 xxxxxx

ready TtTo close, hit a key:

Getting the Libraries

* http://lyonlabs.org/commodore/powerc.html

* I'll be traveling during May 2007, but will
be available for questions after that

e Q-Link: ShadowM

* gholmer@ameritech.net
(for the Q-Link challenged)

