
Hacking the Q-Link Source

How to get involved in the Q-Link Reloaded Project

Glenn Holmer

Emergency Chicagoland Commodore Convention

September 27, 2008

(revised October 5, 2008)

A Little History

● QuantumLink was a Commodore-only dialup
service that operated from 1985 to 1994

● toward the end of that time, more and more
resources were devoted to America On-Line,
resulting in degraded performance (random
teleport menus, corrupted downloads, etc.)

● several projects to revive it over the years

● Jim Brain, working with Keith Henrickson and
others, rolls out a reverse-engineered server
(written in Java) at SWRAP 2005 expo

What Still Needs To Be Done

● the rest of the communication protocols need
to be decoded in order to implement missing
features like file upload/download

● client disk needs to be fully disassembled in
order to provide enhancements (higher baud
rates, support for running it on other devices)

● enhancements to chat (QAdmin, QGuide)

● web-based administrative interface (partly
complete)

Prerequisites

● experience coding Java

● a Java IDE for editing and building

● MySQL for the database

● A working client setup for testing

● GlassFish (for admin interface only)

Getting Started

● contact Jim Brain to get access to the source
and a test database

● create a project from the source in your IDE
and get a test build

● restore the database

● start the server and make sure you can log in

● search the code for the part you want to work
on and start hacking!

Server Startup Sequence #1

● the entry point is QLinkServer.main(),
which creates a QTCPListener

● QTCPListener starts a thread to wait for
incoming connections on a socket

● when a client connects, he starts a
ProxyThread, which creates a
TelenetProxy to emulate a phone
connection over the old Telenet dial-up
network

Q-Link Server Diagram

QLinkServer

QTCPListener

ProxyThread

Server Startup Sequence #2

● when connected, ProxyThread creates a
QConnection (thread) from the socket's
input and output streams

● ProxyThread then creates a QSession

● ProxyThread calls the server's
addSession() method, which adds the
QSession to the server's _vsessions
collection

Q-Link Server Diagram

QLinkServer

QTCPListener

ProxyThread

QSession

QConnection

_vSessions

Server Startup Sequence #3

● QConnection's constructor creates a
KeepAliveTask (pings the client)

● QSession's constructor adds a
ConnEventListener to the QConnection

● QSession then starts the QConnection
thread (which creates a CommandFactory)

● as data are received, QConnection's
command factory creates Command and
Action objects; for Action objects, he fires
an ActionEvent, which QSession hears

Q-Link Server Diagram

QLinkServer

QTCPListener

ProxyThread

QSession

QConnection

_vSessions

CommandFactory

ConnEventListener

Action

Session Processing

● QSession is a state machine; it has as a
member a QState object

● when the session's listener hears an action
event from QConnection, the state's
execute() method is called

● this can call methods to perform the action,
but may also change to a new state (e.g.
changing from menu state to chat state)

State Examples

● Authentication: user is logging in

● MainMenu: the “sparkle menu”

● DepartmentMenu: black-on-grey submenus
for Commodore Information Network,
Software Showcase, message boards, etc.

● Chat: enter a room, chat, play game,
auditorium functions, etc.

State execute() Example

if the current state is DepartmentMenu and
the action is SelectMenuItem :

● selectItem() reads item from database

● if item is a submenu, call selectMenu()
to read MenuEntry objects from the
database

● call sendMenu() to create MenuItem
objects and send them to the client using the
session's send() method

A Word About the Protocol

● QConnection assembles packets from the
raw data stream

● packets include checksum, sequence
number, command byte, instruction, and data
(among other things)

● instructions are two-byte ASCII strings

● walk up an action's class hierarchy to see
how the entire packet is assembled

Protocol Example

● QConnection reads packets from the client
and sends them to its CommandFactory

● the factory examines the eighth byte, and
either creates a command, or if it's 0x20,
sends the packet to its ActionFactory

● the action factory examines the ninth and
tenth bytes to see what kind of action to
create (e.g. K1 if a menu item was selected)

● the session creates MenuItem objects with
KA until the last one, which gets KB

Database Tables

● most objects stored in the database have a
master “reference ID”, usually stored as a
foreign key to the entry_types table, which
also holds the item's type

● main groups of tables include:

users/accounts (accounts == handles)
toc (menu items)
messages (message boards)
files (downloads)

Users/Accounts

users
user_id

accounts
account_id
user_id

Menu Items

entry_types
reference_id
entry_type (129)

toc
reference_id
toc_id
menu_id

toc
reference_id
toc_id
menu_id

p
a

re
n

t
ch

ild

Messages

entry_types
reference_id
entry_type (1)

toc
reference_id
toc_id
menu_id

messages
reference_id
base_id
parent_id

m
sg

. b
oa

rd
m

e
ssag

e

messages
reference_id
base_id
parent_id

re
sp

on
se

Articles (single/multiple page)

entry_types
reference_id
entry_type (130,
 136)

toc
reference_id
toc_id
menu_id

articles
article_id
next_id
prev_id

a
rticle

articles
article_id
next_id
prev_id

co
n

tin
u

a
tio

n

Files

entry_types
reference_id
entry_type (138)

toc
reference_id
toc_id
menu_id

files
reference_id
data

messages
base_id
parent_id

articles
article_id

Resources / Demo

● Q-Link Reloaded site:

http://www.quantumlink.tk

● Q-Link Reloaded message board:

http://jledger.proboards19.com

I can demo the following at my table:

● project setup in NetBeans

● a running “closed loop” system

● admin interface

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

